Skip to main content

Fire Regime and Tree Diversity in Boreal Forests: Implications for the Carbon Cycle

  • Chapter
Forest Diversity and Function

Part of the book series: Ecological Studies ((ECOLSTUD,volume 176))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abaimov AP, Sofronov MA (1996) The main trends of post-fire succession in near-tundra forests of Central Siberia. In: Goldammer JG, Furyaev VV (eds) Fire in ecosystems of Boreal Eurasia, Forestry Sciences, vol 48. Kluver, Dordrecht, pp 372–386

    Google Scholar 

  • Abaimov AP, Lesinski JA, Martinsson O, Milyutin LI (1998) Variability and ecology of Siberian larch species. Swedish University of Agricultural Sciences, Department of Silviculture. Reports No 43, UmeÃ¥, Sweden

    Google Scholar 

  • Abrams MD, Sprugel DG, Dickmann DI (1985) Multiple successional pathways on recently disturbed Jack pine sites in Michigan. For Ecol Manage 10:31–48

    Article  Google Scholar 

  • Agee JK (1998) Fire and pine ecosystems. In: Richardson DM (ed) Ecology and biogeography of Pinus. Cambridge Univ Press, Cambridge, pp 193–218

    Google Scholar 

  • Agee JK, Finney M, Degouvenain R (1990) Forest fire history of Desolation Peak,Washington. Can J For Res 20:350–356

    Google Scholar 

  • Alexeyev VN, Birdsey RA (1996) Carbon storage in forests and peatlands of Russia. USDA Forest Service,Northeastern Research Station, Delaware, p 136

    Google Scholar 

  • Amiro BD (2001) Paired-tower measurements of carbon and energy fluxes following disturbance in the boreal forest. Global Change Biol 7:253–268

    Article  ISI  Google Scholar 

  • Amiro BD, Todd JB, Wotton BM, Logan KA, Flannigan MD, Stocks BJ, Mason JA, Martell DL, Hirsch KG (2001) Direct carbon emissions from Canadian forest fires, 1959-1999. Can J For Res 31:512–525

    Article  CAS  Google Scholar 

  • Anderson L, Carlson CE, Wakimoto RH (1987) Forest fire frequency and western spruce budworm outbreaks in Western Montana. For Ecol Manage 22:254–260

    Article  Google Scholar 

  • Anthoni PM, Unsworth MH, Law BE, Irvine J, Baldocchi DD, Tuyl SV, Moore D (2002) Seasonal differences in carbon and water vapor exchange in young and old-growth ponderosa pine ecosystems. Agric For Meteorol 111:203–222

    Article  Google Scholar 

  • Arbatskaya MK, Vaganov EA (1997) Long-term variation in fire frequency and radial increment in pine from the middle taiga subzone of central Siberia. Rus J Ecol 28:291–297

    Google Scholar 

  • Archibold OW (1995) Ecology of world vegetation. Chapman and Hall, London

    Google Scholar 

  • Arno SF (1976) The historical role of fire on the Bitterroot National Forest. Intermountain Forest and Range Experimental Station, Ogden, Utah 84401, Ogden

    Google Scholar 

  • Arno SF (1980) Forest fire history in the northern Rockies. J For 78:460–465

    Google Scholar 

  • Bergeron Y (1991) The influence of island and mainland lakeshore landscapes on boreal forest-fire regimes. Ecology 72:1980–1992

    ISI  Google Scholar 

  • Bergeron Y, Brisson J (1990) Fire regime in red pine stands at the northern limit of the species’ range. Ecology 71:1352–1364

    ISI  Google Scholar 

  • Bergeron Y, Dubuc M (1989) Succession in the southern part of the Canadian boreal forest. Vegetatio 79:51–63

    ISI  Google Scholar 

  • Bergeron Y, Gauthier S, Kafka V, Lefort P, Lesieur D (2001) Natural fire frequency for the eastern Canadian boreal forest: consequences for sustainable forestry. Can J For Res 31:384–391

    Article  Google Scholar 

  • Black RA, Bliss LC (1980) Reproductive ecology of Picea mariana (Mill) Bsp, at tree line near Inuvik, Northwest Territories, Canada. Ecol Monogr 50:331–354

    Google Scholar 

  • Bond WJ, van Wilgen B (1996) Fire and plants. Chapman and Hall, London

    Google Scholar 

  • Bourgeau-Chavez LL, Kasischke ES, Mudd JP, French NHF (2000) Characteristics of forest ecozones in the North American Boreal Region. In: Kasischke ES, Stocks BJ (eds) Fire, climate change, and carbon cycling in the boreal forest, vol 138. Springer, Berlin Heidelberg New York, pp 258–273

    Google Scholar 

  • Bradshaw RHW, Hannon G (1992) Climatic change, human influence and disturbance regime in the control of vegetation dynamics within Fiby Forest, Sweden. J Ecol 80:625–632

    Google Scholar 

  • Brown JK, Debyle NV (1987) Fire damage, mortality, and suckering in aspen. Can J For Res 17:1100–1109

    Google Scholar 

  • Cahoon DR, Stocks BJ, Levine JS, Cofer WR, Pierson JM (1994) Satellite analysis of the severe 1987 forest-fires in northern China and southeastern Siberia. J Geophys Res Atmos 99:18627–18638

    Google Scholar 

  • Cahoon DR, Stocks BJ, Levine JS, Cofer WR III, Barber JA (1996) Monitoring the 1992 forest fires in the boreal ecosystem using NOAA-AVHRR satellite imagery. In: Levine JS (ed) Biomass burning and global change, vol II. MIT Press, Cambridge, MA, pp 795–801

    Google Scholar 

  • Campbell ID, Flannigan MD (2000) Long-term perspectives on fire-climate-vegetation relationships in the North American boreal forest. In: Kasischke ES, Stocks BJ (eds) Fire, climate change, and carbon cycling in the boreal forest, Ecological Studies, vol 138. Springer, Berlin Heidelberg New York, pp 151–172

    Google Scholar 

  • Canadian National Forestry Database Program http://nfdp.ccmf.org/

    Google Scholar 

  • Carrol SB, Bliss LC (1982) Jack pine — lichen woodland on sandy soils in northern Saskatchewan and northeastern Alberta. Can J Bot 60:2270–2282

    Google Scholar 

  • Cogbill CV (1984) Dynamics of boreal forests of the Laurentian Highlands, Canada. Can J For Res 15:252–261

    Google Scholar 

  • Conard SG, Ivanova GA (1997) Wildfire in Russian boreal forests — potential impacts of fire regime characteristics on emissions and global carbon balance estimates. Environ Pollut 98:305–313

    Article  CAS  Google Scholar 

  • Conard SG, Sukhinin AI, Stocks BJ, Cahoon DRJ, Davidenko EP, Ivanova GA (2002) Determining effects of area burned and fire severity on carbon cycling and emission in Siberia. Clim Change 55:197–211

    Article  CAS  Google Scholar 

  • Conell JH (1979) Tropical rainforests and coral reefs as open non-equilibrium systems. In: Anderson AM, Turner BD, Taylor LR (eds) Population dynamics: 20th symposium of the British Ecological Society. Blackwell, Oxford, pp 141–163

    Google Scholar 

  • Cooke WF, Wilson JJN (1996) A global black carbon aerosol model. J Geophys Res Atmos 101:19395–19409

    CAS  Google Scholar 

  • Cwynar LC (1987) Fire and the forest history of the North Cascade Range. Ecology 68:791–802

    ISI  Google Scholar 

  • Day RJ (1972) Stand structure, succession, and use of southern Albertas Rocky Mountain Forest. Ecology 53:472–478

    ISI  Google Scholar 

  • DeBano LF, Neary DG, Ffolliott PF (1998) Fire’s effects on ecosystems. Wiley, New York

    Google Scholar 

  • Dekort I (1993) Wood production and latewood percentage of Douglas-fir from different stands and vitality classes. Can J For Res 23:1480–1486

    Google Scholar 

  • Dixon RK, Brown S, Houghton RA, Solomon AM, Trexler MC, Wisniewski J (1994) Carbon pools and flux of global forest ecosystems. Science 263:185–190

    CAS  ISI  PubMed  Google Scholar 

  • Donnegan JA, Veblen TT, Sibold JS (2001) Climatic and human influences on fire history in Pike National Forest, central Colorado. Can J For Res 31:1526–1539

    Article  Google Scholar 

  • Engelmark O (1987) Fire history correlations to forest type and topography in northern Sweden. Ann Bot Fenn 24:317–324

    Google Scholar 

  • FIRESCAN science team (1996) Fire in ecosystems of boreal Eurasia: the Bor forest island fire experiment fire research campaign Asia-North (FIRESCAN). In: Levine JS (ed) Biomass burning and global change, vol II. MIT Press, Cambridge, MA, pp 848–873

    Google Scholar 

  • Foster DR (1985) Vegetation development following fire in Picea mariana (Black Spruce)-Pleurozium forests of southeastern Labrador, Canada. J Ecol 73:517–534

    Google Scholar 

  • Foster DR, King GA (1986) Vegetation pattern and diversity in Se Labrador, Canada — Betula-Papyrifera (birch) forest development in relation to fire history and physiography. J Ecol 74:465–483

    Google Scholar 

  • French NHF, Kasischke ES, Stocks BJ, Mudd JP, Martell DL, Lee BS (2000) Carbon Release from Fires in the North American Boreal Forest. In: Kasischke ES, Stocks BJ (eds) Fire, climate change, and carbon cycling in the boreal forest, vol 138. Springer, New York, pp 377–388

    Google Scholar 

  • Frissell SSJ (1973) The Importance of fire as a natural ecological factor in Itasca State Park,Minnesota. Quat Res 3:397–407

    Article  Google Scholar 

  • Furyaev VV, Wein RW, MacLean DA (1983) Fire influences in Abies-dominated forests. In: Wein RW, MacLean DA (eds) The role of fire in northern circumpolar ecosystems, 18th edn. Wiley, Chichester, pp 221–232

    Google Scholar 

  • Furyaev VV, Vaganov EA, Tchebakova NM, Valendik EN (2001) Effects of fire and climate on successions and structural changes in the Siberian boreal forest. Euras J For Res 2:1–15

    Google Scholar 

  • Gabriel HW (1976) Wilderness ecology: the Danahar Creek drainage, Bob Marshall Wilderness,Montana. School of forestry.University of Montana, Missoula, p 224

    Google Scholar 

  • Gill AM (1981) Fire adaptive traits of vascular plants. Fire regimes and ecosystem properties: proceedings of the conference, vol WO-26. USDA Forest Service, Honolulu, pp 208–230

    Google Scholar 

  • Gorbachev VN, Popova EP (1996) Fires and soil formation. In: Goldammer JG, Furyaev VV (eds) Fire in ecosystems of boreal Eurasia, Forestry Sciences, vol 48. Kluver, Dordrecht, pp 331–336

    Google Scholar 

  • Gower ST, McMurtrie RE, Murty D (1996) Aboveground net primary production decline with stand age: Potential causes. Trends Ecol Evol 11:378–382

    Article  Google Scholar 

  • Green DF, Zasada JC, Sirois L, Kneeshaw D, Morin H, Charron I, Simard MJ (1999) A review of the regeneration dynamics of North American boreal forest tree species. Can J For Res 29:824–839

    Google Scholar 

  • Greene DF, Johnson EA (2000) Tree recruitment from burn edges. Can J For Res 30:1264–1274

    Google Scholar 

  • Gutsell SL, Johnson EA (1996) How fire scars are formed: coupling a disturbance process to its ecological effect. Can J For Res 26:166–174

    Article  Google Scholar 

  • Hakkila P (1989) Utilization of residual forest biomass. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Harden JW, Trumbore SE, Stocks BJ, Hirsch A, Gower ST, O’Neill KP, Kasischke ES (2000) The role of fire in the boreal carbon budget. Global Change Biol 6 [Suppl 1]:174–184

    ISI  Google Scholar 

  • Hare RC (1965) Contribution of bark to fire resistance. J For 63:248–251

    Google Scholar 

  • Hawkes BC (1979) Fire history and appraisal study of Kananskis Provincial Park,Alberta Contract Rep for Alberta Provincial Parks. Department of Forest Science, University of Alberta, Edmonton, p 172

    Google Scholar 

  • Heinselman ML (1981) Fire intensity and frequency as factors in the distribution and structure of northern ecosystems. Fire regimes and ecosystem properties: proceedings of the conference, vol WO-26. USDA Forest Service, Honolulu, pp 7–57

    Google Scholar 

  • Hengst GE, Dawson JO (1994) Bark properties and fire resistance of selected tree species from the central hardwood region of North America. Can J For Res 24:688–696

    Google Scholar 

  • Henry JD, Swan JMA (1974) Reconstruction forest history from live and dead plant material — an approach to the study of forest succession in southwest New Hampshire. Ecology 55:772–783

    ISI  Google Scholar 

  • Horn HS (1974) The ecology of secondary succession. Annu Rev Ecol Syst 5:25–37

    Article  Google Scholar 

  • Houston DB (1973) Wildfires in northern Yellowstone National Park. Ecology 54:1111–1117

    ISI  Google Scholar 

  • Ivanova GA (1998/1999) The history of forest fire in Russia. Dendrochronologia 16/17:147–161

    Google Scholar 

  • Jackson JF, Adams DC, Jackson BU (1999) Allometry of constitutive defense: a model and a comparative test with tree bark and fire regime. Am Nat 153:614–632

    Article  Google Scholar 

  • Johnson EA (1979) Fire recurrence in the subarctic and its implications for vegetation composition. Can J Bot 57:1374–1379

    Google Scholar 

  • Johnson EA, Larsen CPS (1991) Climatically induced change in fire frequency in the southern Canadian Rockies. Ecology 72:194–201

    ISI  Google Scholar 

  • Johnson EA, Miyanishi K (2001) Forest fires — behaviour and ecological effects. Academic Press, San Diego

    Google Scholar 

  • Johnson EA, Rowe JS (1975) Fire in the subarctic wintering ground of the Beverly caribouherd. Am Midl Nat 94:1–14

    Google Scholar 

  • Johnson EA, Fryer GI, Heathcott MJ (1990) The influence of man and climate on frequency of fire in the interior wet belt forest, British-Columbia. J Ecol 78:403–412

    Google Scholar 

  • Kasischke ES (2000) Boreal ecosystems in the global carbon cycle. In: Kasischke ES, Stocks BJ (eds) Fire, climate change, and carbon cycling in the boreal forest, Ecological Studies, vol 138. Springer, Berlin Heidelberg New York, pp 19–30

    Google Scholar 

  • Kasischke ES, O’Neill KP, French NHF, Bourgeau-Chavez LL (2000) Controls on patterns of biomass burning in Alaskan boreal forests. In: Kasischke ES, Stocks BJ (eds) Fire, climate change, and carbon cycling in the boreal forest, Ecological Studies, vol 138. Springer, Berlin Heidelberg New York, pp 173–196

    Google Scholar 

  • Kaufmann YJ, Remer LA, Ottmar RD, Ward DE, Li RR, Kleidman R, Fraser RS, Flynn L, McDougal D, Shelton G (1996) Relationship between remotely sensed fire intensity and rate of emission of smoke: SCAR-C Experiment. In: Levine JS (ed) Biomass burning and global change, vol II. MIT Press, Cambridge, MA, pp 685–696

    Google Scholar 

  • Keeley JE, Bond WJ (2001) On incorporating fire into our thinking about natural ecosystems: a response to Saha and Howe. Am Nat 158:664–670

    Article  PubMed  CAS  Google Scholar 

  • Keeley JE, Zedler P (1998) Evolution and life histories of Pinus. In: Richardson DM (ed) Ecology and biogeography of Pinus. Cambridge Univ Press, Cambridge

    Google Scholar 

  • Kilgore BM (1981) Fire in ecosystem distribution and structure: Western forests and shrublands. Fire regimes and ecosystem properties: Proceedings of the Conference, vol WO-26. USDA Forest Service, Honolulu, pp 58–89

    Google Scholar 

  • Kolchugina TP, Vinson TS (1995) Role of Russian forests in the global carbon balance. Ambio 24:258–264

    ISI  Google Scholar 

  • Krebs CJ (1999) Ecological methodology. Benjamin/Cummings, Menlo Park

    Google Scholar 

  • Larsen CPS (1997) Spatial and temporal variations in boreal forest fire frequency in northern Alberta. J Biogeogr 24:663–673

    Google Scholar 

  • Kurz WA, Apps MJ (1999) A 70-year retrospective analysis of carbon fluxes in the Canadian forest sector. Ecol Appl 9:526–547

    Google Scholar 

  • Laursen KK, Radke LF (1996) Biomass burning smoke in the tropics: from sources to sinks. In: Levine JS (ed) Biomass burning and global change, vol II. MIT Press, Cambridge, MA, pp 193–201

    Google Scholar 

  • Lehtonen H, Huttunen P, Zetterberg P (1996) Influence of man on forest fire frequency in North Karelia, Finland, as evidenced by fire scars on Scots pines. Ann Bot Fenn 33:257–263

    Google Scholar 

  • Liousse C, Penner JE, Chuang C, Walton JJ, Eddleman H, Cachier H (1996) A global three-dimensional model study of carbonaceous aerosols. J Geophys Res Atmos 101:19411–19432

    CAS  Google Scholar 

  • Loope LL, Gruell GE (1973) The ecological role of fire in the Jackson Hole Area, Northwestern Wyoming. Quat Res 3:425–443

    Article  Google Scholar 

  • Lorbert JM, Warnatz J (1993) Emission from the Combustion Process in Vegetation. In: Crutzen PJ, Goldammer JG (eds) Fire in the environment — the ecological, atmospheric, and climatic importance of vegetation fires, 13th edn. Wiley, Chichester, pp 15–38

    Google Scholar 

  • Lynham TJ, Stocks BJ (1991) The natural fire regime of an unprotected section of the boreal forest in Canada. 17th Tall Timbers fire ecology conference. Tall Timbers Research Station, Tallahassee, FL, pp 99–109

    Google Scholar 

  • MacDonald GM, Cwynar LC, Whitlock C (1998) The late Quaternary dynamics of pines in northern America. In: Richardson DM (ed) Ecology and biogeography of pinus. Cambridge Univ Press, Cambridge, pp 122–152

    Google Scholar 

  • Maikawa E, Kershaw KA (1976) Studies on lichen-dominated systems. XIX. The postfire recovery sequence of black spruce-lichen woodland in the Abitau Region, N. W. T. Can J Bot 54:2679–2687

    Article  Google Scholar 

  • Masters AM (1990) Changes in forest fire frequency in Kootenay-National-Park, Canadian Rockies. Can J Bot 68:1763–1767

    Google Scholar 

  • McGuire AD, Wirth C, Apps M, Beringer J, Clein J, Epstein H, Kicklighter DW, Bhatti J, Chapin FS, de Groot B, Efremov D, Eugster W, Fukuda M, Gower T, Hinzman L, Huntley B, Jia GJ, Kasischke E, Melillo J, Romanovsky V, Shvidenko A, Vaganov E, Walker D (2002) Environmental variation, vegetation distribution, carbon dynamics and water/energy exchange at high latitudes. J Veg Sci 13:301–314

    Google Scholar 

  • McLean DA, Woodley SJ, Weber MG, Wein RW (1983) Fire and nutrient cycling. In: Wein RW, McLean DA (eds) The role of fire in northern circumpolar ecosystems, 18th edn. Wiley, Chichester, pp 111–134

    Google Scholar 

  • McRea DJ, Conard SG, Ivanova GA, Sukhinin AI, Hao WM, Koutzenougij KP, Baker SP, Ivanov VA, Samosonov YN, Churkina TV, Ivanov AV, Blake TW (2004) Fire regimes, variability in fire behaviour, and fire effects on combustion and chemical and carbon emission in Scots pine forests of Central Siberia. International Journal for Mitigation and Adaptation Strategies for Global Change (MITI) (in press)

    Google Scholar 

  • Michalek JL, French NHF, Kasischke ES, Johnson RD, Colwell JE (2000) Using Landsat TM data to estimate carbon release from burned biomass in an Alaskan spruce forest complex. Int J Remote Sensing 21:323–338

    Google Scholar 

  • Millar CI (2000) Early evolution of pines. In: DM Richardson (ed) Ecology and biogeography of Pinus, Cambridge University Press, Cambridge

    Google Scholar 

  • Mollicone D, Achard F, Marchesini LB, Federici S, Wirth C, Leipold M, Rosellini S, Schulze ED, Valentini R (2002) A remote sensing based approach to determine forest fire cycle: case study of the Yenisei Ridge dark taiga. Tellus B54:688–695

    Google Scholar 

  • Murphy PJ, Mudd JP, Stocks BJ, Kasischke ES, Barry D, Alexander ME, French NHF (2000) Historical fire records in the North American boreal forest. In: Kasischke ES, Stocks BJ (eds) Fire, climate change, and carbon cycling in the boreal forest, vol 138. Springer, Berlin Heidelberg New York, pp 274–288

    Google Scholar 

  • Neary DG, Klopatek CC, DeBano LF, Ffolliott PF (1999) Fire effects on belowground sustainability: a review and synthesis. For Ecol Manage 122:51–71

    Article  Google Scholar 

  • Nikolov N, Helmisaari H (1992) Silvics of the circumpolar boreal forest species. In: Shugart HH, Leemans R, Bonan GB (eds) A systems analysis of the global boreal forest. Cambridge Univ Press, Cambridge, p 565

    Google Scholar 

  • Nilsson S, Shvidenko A, Stolbovoi V, Gluck M, Jonas M, Obersteiner M (2000) Full carbon account of Russia. interim report 00-021, International Institute for Applied Systems Analysis, Laxenburg,Austria

    Google Scholar 

  • Olsen JS (1981) Carbon balance in relation to fire regimes. Fire regimes and ecosystem properties: proceedings of the conference, vol WO-26. USDA Forest Service, Honolulu, pp 327–378

    Google Scholar 

  • Payette S, Morneau C, Sirois L, Desponts M (1989) Recent fire history of the northern Quebec biomes. Ecology 70:656–673

    ISI  Google Scholar 

  • Pitkäninen, A, Grönlund E (2001) A 600-year forest fire record in a varved lake sediment (Ristijärvi, northern Karelia, eastern Finland). Ann Bot Fenn 38:63–73

    Google Scholar 

  • Poorter H, Villar R (1997) The fate of acquired carbon in plants: chemical composition and construction costs. In: Bazzaz FA, Grace J (eds) Plant resource allocation. Academic Press, San Diego, pp 39–72

    Google Scholar 

  • Prentice IC, Cramer W, Harrison SP, Leemans R, Monserud RA, Solomon AM (1992) A global biome model based on plant physiology and dominance, soil properties and climate. J Biogeogr 19:117–134

    Google Scholar 

  • Raison RJ (1979) Modification of the soil environment by vegetation fires,with particular reference to nitrogen transformations — review. Plant Soil 51:73–108

    CAS  Google Scholar 

  • Roberts MR, Gilliam FS (1995) Patterns and mechanisms of plant diversity in forested ecosystems — implications for forest management. Ecol Appl 5:969–977

    Google Scholar 

  • Romme WH (1982) Fire and landscape diversity in subalpine forests of Yellowstone-National-Park. Ecol Monogr 52:199–221

    Google Scholar 

  • Romme WH, Knight DH (1981) Fire frequency and subalpine forest succession along a topographic gradient in Wyoming. Ecology 62:319–326

    ISI  Google Scholar 

  • Rowe JS (1983) Concepts of fire effects on plant individuals and species. In: Wein RW, McLean DA (eds) The role of fire in northern circumpolar ecosystems, 18th edn. Wiley, Chichester

    Google Scholar 

  • Rowe JS, Spittelhouse D, Johnson E, Jasenuik M (1975) Fire studies in the upper Mackenzie Valley and adjacent Precambrian uplands. Canadian Department of Indian and Northern Affairs (DINA),Arctic Land Use Research.Information, Ottawa, Canada

    Google Scholar 

  • Rundel PW (1981) Structural and chemical components of flammability. Fire regimes and ecosystem properties: proceedings of the conference, vol WO-26. USDA Forest Service, Honolulu, pp 183–207

    Google Scholar 

  • Ryan KC, Reinhardt ED (1988) Predicting postfire mortality of 7 western conifers. Can J For Res 18:1291–1297

    Google Scholar 

  • Sannikov SN, Goldammer JG (1996) Fire ecology of pine forests of northern Eurasia. In: Goldammer JG, Furyaev VV (eds) Fire in ecosystems of boreal Eurasia, Forestry Sciences, vol 48. Kluver, Dordrecht, pp 151–167

    Google Scholar 

  • Schulze ED, Schulze W, Kelliher FM, Vygodskaya NN, Ziegler W, Kobak KI, Koch H, Arneth A, Kusnetsova WA, Sogachev A, Issajev A, Bauer G, Hollinger DY (1995) Aboveground biomass and nitrogen nutrition in a chronosequence of pristine dahurian larix stands in eastern Siberia. Can J For Res 25:943–960

    Google Scholar 

  • Schwilk DW, Ackerly DD (2001) Flammability and serotiny as strategies: correlated evolution in pines. Oikos 94:326–336

    Article  ISI  Google Scholar 

  • Shepashenko D, Shvidenko A, Nilsson S (1998) Phytomass (live biomass) and carbon of Siberian forests. Biomass Bioenerg 14:21–31

    Article  CAS  ISI  Google Scholar 

  • Sheppard PR, Lassoie JP (1998) Fire regime of the Lodgepole pine forest of Mt. San Jacinto, California. Madrono 45:47–56

    Google Scholar 

  • Shvidenko A, Nilsson S (1994) What do we know about the Siberian forests. Ambio 23:396–404

    ISI  Google Scholar 

  • Shvidenko A, Nilsson S (2000a) Extent,distribution, and ecological role of fire in Russian forests. In: Kasischke ES, Stocks BJ (eds) Fire, climate change, and carbon cycling in the boreal forest, Ecological Studies, vol 138. Springer, Berlin Heidelberg New York, pp 132–150

    Google Scholar 

  • Shvidenko A, Nilsson S (2000b) Fire and the carbon budget of Russian forests. In: Kasischke ES, Stocks BJ (eds) Fire, climate change, and carbon cycling in the boreal forest, Ecological Studies, vol 138, Springer, Berlin Heidelberg New York, pp 289–311

    Google Scholar 

  • Shvidenko A, Nilsson S (2002) Dynamics of Russian forests and the carbon budget in 1961-1998: an assessment based on long-term forest inventory data. Clim Change 55:5–37

    Article  CAS  Google Scholar 

  • Sneck KM (1970) The fire history Coram experimental forest. University of Montana, Missoula, p 134

    Google Scholar 

  • Snytkin GV (1996) Fires in ecosystem of the far northeast of Siberia. In: Goldammer JG, Furyaev VV (eds) Fire in ecosystems of boreal Eurasia, Forestry Sciences, vol 48. Kluwer, Dordrecht, pp 197–210

    Google Scholar 

  • Stocks BJ (1989) Fire behavior in mature jack pine. Can J For Res 19:783–790

    Google Scholar 

  • Stocks BJ, Cahoon DRJ, Cofer WR III, Levine JS (1996) Monitoring large-scale forest fire behavior in Northeastern Siberia using NOAA-AVHRR satellite imagery. In: Levine JS (ed) Biomass burning and global change, vol II. MIT Press, Cambridge, MA, pp 802–807

    Google Scholar 

  • Stuart JD, Salazar LA (2000) Fire history of white fir forests in the coastal mountains of northwestern California. Northwest Science 74:280–285

    ISI  Google Scholar 

  • Swetnam TW (1993) Fire history and climate-change in giant sequoia groves. Science 262:885–889

    ISI  PubMed  Google Scholar 

  • Sykes MT (2001) Modelling the potential distribution and community dynamics of lodgepole pine (Pinus contorta Dougl. ex. Loud.) in Scandinavia. For Ecol Manage 141:69–84

    Article  Google Scholar 

  • Tande GF (1977) Forest fire history around Jasper Townsite, Jasper National Park, Alberta. Department of Botany. University of Alberta, Edmonton, p 169

    Google Scholar 

  • Tande GF (1979) Fire history and vegetation pattern of coniferous forests in Jasper National Park,Alberta. Can J Bot 57:1912–1931

    Google Scholar 

  • Taylor KL, Fonda RW (1990) Woody fuel structure and fire in sub-alpine fir forests, Olympic-National-Park,Washington. Can J For Res 20:193–199

    Google Scholar 

  • Tilman D, Lehman C (2001) Biodiversity, composition, and ecosystem processes: theory and concepts. In: Kinzig AP, Pacala SW, Tilman D (eds) The functional consequences of biodiversity — empirical progress and theoretical extensions. Princeton Univ Press, Princeton, pp 9–41

    Google Scholar 

  • Tsvetkov PA (1996) Fire effects on larch forests. In: Goldammer JG, Furyaev VV (eds) Fire in ecosystems of Boreal Eurasia, Forestry Sciences, vol 48. Kluver, Dordrecht, pp 387–392

    Google Scholar 

  • United Nations Economic Commission for Europe, Food and Agriculture Organisation UN-ECE/FAO (2000) Forest Resources of Europe, CIS, North America, Australia, Japan, New Zealand. Geneva Timber and Forest Study Papers, No 17 United Nations Publications, New York, Geneva

    Google Scholar 

  • Utkin A (1965) Forests of Central Yakutia. Nauka Publ, Moscow

    Google Scholar 

  • Vaganov EA, Arbatskaya MK, Shashkin AV (1996) Climate history and fire incidence in the central part of Krasnoyarsk Krai. II. Dendrochronological analysis of relationship between variability of tree increment, climate, and fire incidence. Sib J Ecol 1:19–27

    Google Scholar 

  • Valendik EN (1996) Ecological aspects of forest fires in Siberia. Sib J Ecol 1:1–8

    Google Scholar 

  • Van Wagner CE (1972) Height of crown scorch in forest fires. Can J For Res 3:373–378

    Google Scholar 

  • Van Wagner CE (1978) Age-class distribution and forest fire cycle. Can J For Res 8:220–227

    Google Scholar 

  • Van Wagner CE (1983) Fire behaviour in northern conifer forests and shrublands. In: Wein RW, McLean DA (eds) The role of fire in northern circumpolar ecosystems, 18th edn. Wiley, Chichester, pp 65–80

    Google Scholar 

  • Viereck LA (1973) Wildfire in the Taiga of Alaska. Quat Res 3:465–495

    Article  Google Scholar 

  • Vines RG (1968) Heat transfer through bark, and the resistance of trees to fire. Aust J Bot 16:499–514

    Google Scholar 

  • Vitousek PM, Howarth RW (1991) Nitrogen limitation on land and in the sea — how can it occur. Biogeochemistry 13:87–115

    Article  ISI  Google Scholar 

  • Vygodskaya NN, Schulze ED, Tchebakova NM, Karpachevskii LO, Kozlov, Sidorov KN, Panfyorov MI, Abrazko MA, Shaposhnikov ES, Solnzeva ON, Minaeva TY, Jeltuchin AS, Wirth C, Pugachevskii AV (2002) Climatic control of stand thinning in unmanaged spruce forests of the southern taiga in European Russia. Tellus B 54:443–461

    Article  Google Scholar 

  • Waldrop TA, Brose PH (1999) A comparison of fire intensity levels for stand replacement of table mountain pine (Pinus pungens Lamb.). For Ecol Manage 113:155–166

    Article  Google Scholar 

  • Wang CK, Gower ST, Wang YH, Zhao HX, Yan P, Bond-Lamberty BP (2001) The influence of fire on carbon distribution and net primary production of boreal Larix gmelinii forests in north-eastern China. Global Change Biol 7:719–730

    ISI  Google Scholar 

  • Weaver H (1959) Ecological changes in the ponderosa pine forest of the warm springs Indian reservation in Oregon. J For 57:15–20

    Google Scholar 

  • Wirth C, Schulze ED, Schulze W, von Stünzner-Karbe D, Ziegler W, Miljukova IM, Sogatchev A, Varlagin AB, Panvyorov M, Grigoriev S, Kusnetzova W, Siry M, Hardes G, Zimmermann R, Vygodskaya NN (1999) Above-ground biomass and structure of pristine Siberian Scots pine forests as controlled by competition and fire. Oecologia 121:66–80

    Article  ISI  Google Scholar 

  • Wirth C, Czimczik CI, Schulze E-D (2002a) Beyond annual budgets: carbon flux at different temporal scales in fire-prone Siberian Scots pine forests. Tellus B 54:611–630

    Article  Google Scholar 

  • Wirth C, Schulze ED, Lühker B, Grigoriev S, Siry M, Hardes G, Ziegler W, Backor M, Bauer G, Vygodskaya NN (2002b) Fire and site type effects on the long-term carbon and nitrogen balance in pristine Siberian Scots pine forests. Plant Soil 242:41–63

    Article  CAS  Google Scholar 

  • Wirth C, Schulze E-D, Kusznetova V, Milyukova I, Hardes G, Siry M, Schulze B, Vygodskaya NN (2002c) Comparing the influence of site quality, stand age, fire and climate on aboveground tree production in Siberian Scots pine forests. Tree Physiol 22:537–552

    PubMed  CAS  ISI  Google Scholar 

  • Wright HA, Bailey AW (1982) Fire ecology — United States and southern Canada. Wiley, New York

    Google Scholar 

  • Yarie J (1980) Forest fire cycles and life tables: a case study from interior Alaska. Can J For Res 11:554–562

    Google Scholar 

  • Yarie J, Billings S (2002) Carbon balance of the taiga forest within Alaska: present and future. Can J For Res 32:757–767

    Article  Google Scholar 

  • Yevdokimenko MD (1996) Fire-induced transformations in the productivity of light coniferous stands of the Trans-Baikal region and Mongolia. In: Goldammer JG, Furyaev VV (eds) Fire in ecosystems of Boreal Eurasia, Forestry Sciences, vol 48. Kluwer, Dordrecht, pp 211–218

    Google Scholar 

  • Zackrisson O (1977) Influence of forest fires on the North Swedish boreal forest. Oikos 29:22–32

    ISI  Google Scholar 

  • Zasada JC, Sharik TL, Nygren M (1992) The reproductive process in boreal forest trees. In: Shugart HH, Leemans R, Bonan GB (eds) A systems analysis of the global boreal forest. Cambridge Univ Press, Cambridge, pp 85–125

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wirth, C. (2005). Fire Regime and Tree Diversity in Boreal Forests: Implications for the Carbon Cycle. In: Scherer-Lorenzen, M., Körner, C., Schulze, ED. (eds) Forest Diversity and Function. Ecological Studies, vol 176. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26599-6_15

Download citation

Publish with us

Policies and ethics