Skip to main content

Foamed polymers based on reactive oligomers

  • Conference paper
  • First Online:
Polymer Products

Part of the book series: Advances in Polymer Science ((POLYMER,volume 39))

Abstract

This article surveys the specific features of polymer science for gas-filled polymers (main principles of their classification as well as the major problems of their physics, chemistry, technology and application). Special attention is given to the discussion of the author's findings concerning the morphology of foamed plastics based on reactive oligomers such as polyurethane, phenolic and urea-formaldehyde polymers. These findings evidence the presence in their cellular structure of micromorphological cells (size: 0.01–0.1 micron), which the author terms microcells. It is especially emphasized that these microcells represent the most fundamental and most widely used type of such foamed plastics. The number of these microcells is 102–103 times higher than that of the well-known macrocells; this is why the specific surface area of such polymer substances is larger than 200 m2/g. The physicochemical properties of oligomeric foamed polymers (thermooxidation, electrical and moisture absorption) are explained by the microcell concept. Future trends with regard to new starting materials, methods of preparation, technology, theoretical investigation and long-term perspectives of these plastic foames are discussed.

Daß ich erkenne, was die Welt im Innersten zusammenhält, schau' alle Wirkungskraft und Samen und tu' nicht mehr in Worten kramen.

J. W. Goethe

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Abbreviations

BET:

Brunauer-Emmett-Teller method

DABCO:

triethylenediamine/dipropylene glycol

DC:

polymethylsiloxanes

FL-1:

Soviet grade of resol phenol-formaldehyde foam

FRP-1:

Soviet grade of resol phenol-formaldehyde foam

GSE:

Gas-Structural Element

MDI:

4,4′-diphenylisocyanate

MGF-1:

α, ω-methacryl(bisethylenegly cole) phtalate

MGF-9:

α, ω-methacryl(diethyleneglycole) phtalate

NMR:

nuclear magnetic resonance method

OEA:

oligoester acrylate

OEM:

oligoester methacrylate

OFM:

oligoester fumarate maleates

PEN-1:

Soviet grade of epoxide-novolac phenolic foam

PF foam:

phenol-formaldehyde foam

PPU-3:

-3S, -102, -305, -305A, -307 Soviet grades of PUR foams

PUR foam:

polyurethane foam

RO:

reactive oligomer

SE:

static electrization

SEP-1:

Soviet grade of phenolicurethane foam

SFUP:

Soviet grade of phenolicurethane foam

SIN:

Simultaneous Interpenetrating Networks

TGM-3:

tris(oxyethylene)-α, ω-(dimeth) acrylate

TMGF-11:

α, ω-dimethacryl (1,3) bisglycerine-2-phtalate

UF foam:

urea-formaldehyde foam

a:

sample thickness; coefficient

A:

surface area of foamed plastic

A*o :

amplitude of free nuclear induction

C1, C2, C3 :

empirical coefficients

d:

thickness of struts; diameter of the water molecule

df :

hydraulic diameter

D:

diameter of cell; the most probable size of cells

Di :

current diameter of cells

Ebr :

breakdown voltage (dielectric strength)

f:

frequency of electromagnetic field

F (x):

Weibull function

ħ:

Planck constant

H:

molar heat of phase transition

k:

Boltzmann constant

K:

empirical coefficient

K1, K2 :

coefficients of uniformity of cellular structure

l:

length of rib of dodecahedron

la, lb, lc :

traces of current via liquid foam

L:

capillar length

m:

mass of dry foam

mg :

mass of gas

mw :

mass of water

M:

the arithmetic mean value

n:

number of rows of foam models

P:

porosity; pressure

P0 :

saturated vapor pressure

Δ Pf :

drop of the pressure of liquid

ΔPg :

drop of the pressure of water steam

Δ Pc :

suction pressure of capillaries

q:

electrostatic charge

Q:

heat flow

r, R:

cell radius

R1, R2 :

curvature radius

Re:

Reynolds number

S:

specific surface area

T:

temperature

v:

flow rate

V:

geometric volume of foam

W:

weight humidity

α:

contact angle

γ:

apparent density of foam

γ f :

density of liquid

γ g :

density of gas

γg:

saturation density of gase phase

γ p :

density of polymer phase

γ w :

density of water

γ 1 :

gyromagnetic ratio of the nucleus

Γ:

gamma-function

δ:

thickness of cell wall

tg δ :

dielectric losses

ε:

dielectric permeability

η f :

kinematic viscosity

κ:

electroconductivity

ϑ:

volume fraction of phase

ϑ g :

volume fraction of gas

ϑ p :

volume fraction of polymer phase

ϑ w :

volume fraction of water

ϑ α :

volume fraction of open cells

ϑ*w:

volume fraction of equilibrium water

ϑ 1w :

volume fraction of the monomolecular layer of absorbed water

ϑ*max:

maximal value of ϑ*w

Θ:

correction factor

λ:

generalized conductivity

λi :

Di/D

ν i :

the frequency of appearance of cells with size “i”

ρ v :

volumetric electroresistance

σ:

surface tension coefficient; surface density of charge; root-mean-square deviation

τ:

current time

τ*:

time of equilibrium moisture absorption

τ 1 :

longitudinal relaxation time

ϕ:

relative humidity

χ:

Pirson criterion

ψ:

resistance coefficient

ω:

volume humidity

9 References

  1. Berlin, A. A.: Reactive oligomers and polymeric materials on their basis. First All-Union Conference on Polymerizable Oligomers, pp. 8–58. Moscow-Chernogolovka; USSR 1971. (In Russian)

    Google Scholar 

  2. Berlin, A. A., Matveeva, N. G.: J. Polym. Sci. Macromol. Rev. 12, 1 (1977)

    Article  CAS  Google Scholar 

  3. Berlin, A. A., Shutov, F. A.: Strengthened gas-filled plastics. Moscow, Chemistry 1980 (In Russian); Berlin, Heidelberg, New York, Springer (in translation), in preparation

    Google Scholar 

  4. Berlin, A. A., Shutov, F. A.: Foamed polymers based on reactive oligomers. Moscow: Khimiya 1978 (in Russian); Stamford/USA: Technomic (in translation)

    Google Scholar 

  5. Berlin, A. A., Shutov, F. A.: Basic principles of the chemistry and technology of gas-filled high polymers. Moscow: Nauka 1979 (in Russian)

    Google Scholar 

  6. Berlin, A. A.: Production of gas-filled plastics and elastomers. Moscow: GosKhimizdat 1953 (in Russian)

    Google Scholar 

  7. Berlin, A. A., Shutov, F. A., Aseeva, R. M.: Specific features of thermal oxidation of phenolic foams, Plasticheskie Massy 1971, No. 12, 41 (in Russian)

    Google Scholar 

  8. Shutov, F. A.: On an unknown type of morphology of phenolic plastic foams. 8th All-Union Conference on High-Molecular Compounds, Kazan/USSR, 1973 (in Russian)

    Google Scholar 

  9. Shutov, F. A.: The gas-structure element and a new classification of plastic foams. All-Union Conference on Gas-Filled Polymers, Vladimir/USSR, 1974 (in Russian)

    Google Scholar 

  10. Berlin, A. A., Shutov, F. A.: Gas-structure element of plastic foams. Second Internation Conference on the Mechanics and Technology of Composite Materials. Varna, Bulgaria 1979

    Google Scholar 

  11. Fedodeev, V. I., Litvinova, T. A.: State of water in phenolic plastic foams. Kolloidnyi Zhurnal 38, 756 (1976) (in Russian)

    CAS  Google Scholar 

  12. Shutov, F. A.: Problems and future of plastic foams based on reactive oligomers. Second All-Union Conference on the Chemistry and Physical Chemistry of Reactive Oligomers, Alma-Ata/USSR, 1979 (in Russian)

    Google Scholar 

  13. Sedov, A. N., Mikhailov, E. V.: Unsaturated polyester resins. Moscow: Khimiya 1977 (in Russian)

    Google Scholar 

  14. Berlin, A. A., Mezhikovsky, S. M.: Problems of polymer-oligomer compositions. Zh. Vses. Khim. Obshchest. 5, 531 (1976) (in Russian)

    Google Scholar 

  15. Berlin, A. A.: Chemistry and technology of reactive oligomers. Plaste u. Kautschuk 20, 728 (1973)

    CAS  Google Scholar 

  16. Plunguian, M., Cornell, E.: Process for forming foamed unsaturated polyester resins. US Pat. 3,896,060 (1974)

    Google Scholar 

  17. Jacobs, R. L., Backly, D. A., Simpson, J. V.: Low density resin foams. US Pat. 3,920,589 (1975), 3,920,591 (1975)

    Google Scholar 

  18. Minowa, S.: Porous composite materials. Japan Plastic Age 10, 36 (1972)

    Google Scholar 

  19. Gandini, A.: Furan derivatives in polymerization reactions. Advan. Polym. Sci. 25, 47 (1977)

    CAS  Google Scholar 

  20. Wade, R. C.: Flame retardant resinous foams based on furfuryl alcohol. Belgian Pat. 805,518 (1974), USA Pat. 3,865,757 (1974)

    Google Scholar 

  21. Van Leer Inds. Ltd.: Heat and fire resistant furfuryl alcohol foams. British. Pat. 1,487,204 (1977)

    Google Scholar 

  22. Van Leer Inds. Ltd.: Non-burning class 1 rating foams and a method of producing some. US Pat. 4,016,111 (1977)

    Google Scholar 

  23. Larsen, H. O., Barfoed, S., Cent John, A. G.: Polyfuran foams. US Pat. 3,975,318 (1976), 3,975,319 (1976)

    Google Scholar 

  24. VEB Farbenfab. Wolfen: Methylolketone resin foams. G. British Pat. 1,237,318 (1967), 1,238,666 (1967)

    Google Scholar 

  25. VEB Farbenfab. Wolten: Foamed polymers. British Pat. 1,213,116 (1966)

    Google Scholar 

  26. Frisch, K. C.: Miscellaneous foams. In: Plastic foams, Frisch, K. C., Saunders, J. H. (eds.), part II, pp. 770–781. New York: Marcel Dekker 1973

    Google Scholar 

  27. Guichard, M.: Impact resistant foams based on Coumarone indene resin. Belgian Pat. 862,226 (1978)

    Google Scholar 

  28. Markusch, P., Deuterich, D., Kunstler, N.: Verfahren zur Herstellung anorganisch-organischer Kunststoffe. BDR Pat. 2,559,255 (1977)

    Google Scholar 

  29. Lipatov, Yu. S., Sergeeva, L. M.: Synthesis and properties of interpenetrating networks. Usp. Khim. 45, 138 (1976) (in Russian)

    CAS  Google Scholar 

  30. Schafer, R. J. et al.: J. Cellular Plastics 14, 146 (1978)

    Article  CAS  Google Scholar 

  31. Chem. Anlagen Bischo (Reut.): Foams Prepared from Phenoplast and Di-and/or polyisocyanates. BDR Pat. 2,542,900 (1977)

    Google Scholar 

  32. Hoechst AG (Reic.): Polyurethane foams made from oxyalkylated novolac. BDR Pat. 1,745,317 (1977)

    Google Scholar 

  33. Kudzio, I.: Polyurethane foams modified by urethanes. Japan Pat. 5,365,396 (1976), 5,114,0564 (1978)

    Google Scholar 

  34. Anonymous: New ideas in rigid foams broaden insulation capabilities. Modern Plast. Intern. 8, 50 (1978)

    Google Scholar 

  35. Artyushina, A. A., Tyuzneva, O. B., Chistyakov, A. M.: New casting plastic foam. Plast. Massy 1976, No. 9, 61 (in Russian)

    Google Scholar 

  36. Gur'ev, V. V., Sinchillo, Yu. Ya., Shutov, F. A.: Interactions of components in combined phenol — urethane foams. Plast. Massy 1978, No. 5, 73 (in Russian)

    Google Scholar 

  37. Berlin, A. A. et al.: Plaste u. Kautschuk 25, 697 (1978)

    CAS  Google Scholar 

  38. Valgin, V. D., Murasciov, Yu. S.: Materie Plastiche Elastomeru 1974, 692

    Google Scholar 

  39. Valgin, V. D.: Modified phenolic foams. All-Union Conf. Gas-Filled Polymers. Vladimir/USSR, 1978 (in Russian)

    Google Scholar 

  40. Valgin, V. D., Novak, V. A.: Phenolic foams of the type Vilares. Plast. Massy 1974, No. 10, 44 (in Russian)

    Google Scholar 

  41. Frank, H. G. (Rütgerswerke AG): Verfahren zur Herstellung von Schaumstoffen aus Bituminosen. BDR Pat. 1,620,847 (1977)

    Google Scholar 

  42. Ownes-Cornig Fiber Glass Corp.: Frothed Molding Composition. US Pat. 4,005,036 (1977)

    Google Scholar 

  43. Rechner Luc.: Mousse de copolymer urée formophénolique à catalyseur faible. France Pat. 7,510,368 (1976)

    Google Scholar 

  44. Camp de Saint Gobain: Thermally Stable Phenolic Foams. BDR Pat. 1,923,719 (1976)

    Google Scholar 

  45. GAF Crp.: Insoluble Porous Complexes made from Crosslinked Nitrogen USA Pat. 3,914,187 (1976)

    Google Scholar 

  46. Kozlov, N. A., Shorokhov, V. B.: Modification of phenolic foams. All-Union Conference on Gas-Filled Polymers, Vladimir USSR, 1978 (in Russian)

    Google Scholar 

  47. Kozlov, N. A., Shorokhov, V. B.: Modified phenolic foams. Plast. Massy 1979, No. 7, 55 (in Russian)

    Google Scholar 

  48. Mackowski, R., Majewski, S., Ostowski, K.: Phenol-polystyrene plastic foams. Polim.-Tworz. Wielkoczasteczkowe 3, 107 (1978) (in Polish)

    Google Scholar 

  49. Pokrovsky, V. M. et al.: Plastic foams with additives. Stroitel'nye materialy i konstruktsii 1978, No. 1, 22 (in Russian)

    Google Scholar 

  50. Bayer AG: Polyurethane Foams Obtained from Polyisocyanate and Polyester Containing Aminoplast. British Pat. 1,506,341 (1978)

    Google Scholar 

  51. Mitsubishi Gas Chem. Ind.: Modified Urethane Foam Production. Japan Pat. 52,153,000 (1977)

    Google Scholar 

  52. Wagner, K. (Bayer AG): Verfahren zur Herstellung von Schaumstoffen. BDR Pat. 2,514,633 (1976)

    Google Scholar 

  53. Stern, G., Wegleituer, K. (Chemie Linz.): Verfahren zur Herstellung von Schaumkunststoffen. Österreich. Pat. 346,604 (1978)

    Google Scholar 

  54. Tokyo Rubber Ind.: Flame Retardant Acrylic Foames. Japan Pat. 7,017,876 (1977)

    Google Scholar 

  55. BASF AG: Magnetic Recording Elements Containing an Improved Polymeric Binder. BDR-Pat. 1,907,957 (1977)

    Google Scholar 

  56. Hubbard, D. A. (Imper. Chem. Ind.): Process for Producing Expanded Urea-Formaldehyde Products. British Pat. 1,463,063 (1977)

    Google Scholar 

  57. Baumann, H.: Preparation and Processing of Urea-Formaldehyde Foam Polymers. Jap. Plast. 10, 9, 13 (1976)

    Google Scholar 

  58. Balm Paints Ltd.: Amine Resins and Processes. US Pat. 4,007,142 (1977)

    Google Scholar 

  59. Matsushita Elect. Nor.: Foamable Flame Resistant. Japan Pat. 1,141,497 (1976)

    Google Scholar 

  60. Wilmsen, H.: Preparing of Flame Retardant Foamed Plastics. Swiss Pat. 588,456 (1976), 602,839 (1978)

    Google Scholar 

  61. Andreev, L. V., Khasanov, R. M., Prosvirin, A. A.: preparation of furan-urethane foams. All-Union Conference on Gas-Filled Polymers, Vladimir/USSR, 1978 (in Russian)

    Google Scholar 

  62. Seryakov, G. V., Sokolov, G. M., Voskresensky, V. A.: Casting epoxide-phenolic foam. All-Union Conference on Gas-Filled Polymers, Vladimir/USSR, 1978 (in Russian)

    Google Scholar 

  63. Schuur, G.: Plastica 31, 97 (1978)

    CAS  Google Scholar 

  64. Baumann, H.: Formaldehyde in UF-shuim. Plastica 30, 72 (1977)

    CAS  Google Scholar 

  65. Kozlov, K. V.: On the Determination of Coefficient of Uniformity in Foamed Plastics. Zavod. Lab. Nll. 1973, 1396 (in Russian)

    Google Scholar 

  66. Spektor, F. A., Shutov, F. A.: Microstructure of phenolic foams. In: Physics of building materials. Oborin, L. A. (ed.), pp. 11–14. Leningrad: Building Institute 1970. (in Russian)

    Google Scholar 

  67. Shutov, F. A.: New approach to the study of oligomeric foam properties. All-Union Conference on Gas-Filled Polymers, Vladimir/USSR, 1978 (in Russian)

    Google Scholar 

  68. Shutov, F. A., Chaikin, I. I.: Micro-and macrocellular structure of polyurethane foams. Proizvodstvo i Pererabotka Plasticheskikh Mass i Sinteticheskikh Smol 1979, No. 4, 14 (in Russian)

    Google Scholar 

  69. Shutov, F. A., Chaikin, I. I.: Electrical properties of polyurethane foams. All-Union Conference on Polyurethanes, Vladimir/USSR, 1979 (in Russian)

    Google Scholar 

  70. Shutov, F. A.: Problems of the physical chemistry of polyurethane foams, ibid.

    Google Scholar 

  71. Shutov, F. A., Chaikin, I. I.: Morphology of polyurethane foams. Fifth Internat. Conf. Cellular and Non-Cellular Urethanes, Strasburg 1980

    Google Scholar 

  72. Aleksandrov, A. Ya., Borodin, M. Ya., Pavlov, V. V.: Constructions with plastic foam fillers. Moscow, Mashinostroenie 1972 (in Russian)

    Google Scholar 

  73. Lowe, A. J. et al.: The phenol formaldehyde foams. 4./SPI Internat. Cellular Plastics Conf., Montreal, 1976

    Google Scholar 

  74. Rossmy, G. R. et al.: J. Cell. Plast. 13, 26 (1977)

    Article  CAS  Google Scholar 

  75. Oween, M. J., Denis, C.: J. Cell. Plast. 13, 264 (1977)

    Article  Google Scholar 

  76. Dubyaga, E. G., Tarakanov, O. G.: Khim. Prom. 8, 607 (1976)

    Google Scholar 

  77. Lemlich, R.: Ind. Eng. Chem. Fundam. 17, 89 (1978)

    Article  CAS  Google Scholar 

  78. Saunders, J. H., Frisch, K. C.: Polyurethanes. New York, London: Interscience, 1964

    Google Scholar 

  79. Schauver, A., Truxa, K., Spitzer, Z.: The study of structure of cellular materials. Stavebnicky Casopis 15, 245 (1967) (in Czech)

    Google Scholar 

  80. Salyer, I. O., Usmani, A. M.: J. Appl. Polym. Sci. 23, 381 (1979)

    Article  CAS  Google Scholar 

  81. Renner, A.: Kondensationspolymere aus Harnstoff und Formaldehyd mit großer spezifischer Oberfläche. Makromol. Chem. 149, 1 (1971)

    Article  CAS  Google Scholar 

  82. Kopshev, E. Yu., Shoshtaeva, M. V., Korotkov, L. I.: Effect of apparent density on flammability of rigid polyurethane foams. Plast. Massy 1979, No. 2, 51 (in Russian)

    Google Scholar 

  83. Salyer, I. O. et al.: J. Cell. Plast. 9, 25 (1973)

    Article  CAS  Google Scholar 

  84. Mendelson, M. A. et al.: J. Appl. Polym. Sci. 23, 325 (1979)

    Article  Google Scholar 

  85. Sarig, G., Little, R. W., Segerlind, L. J.: J. Appl. Polym. Sci. 22, 419 (1978)

    Article  CAS  Google Scholar 

  86. Menges, G., Knipschild, F.: Polym. Eng. Sci. 15, 623 (1975)

    Article  CAS  Google Scholar 

  87. Barma, P. et al.: Amer. Chem. Soc., Polym. Prepr. 19, 698 (1978)

    CAS  Google Scholar 

  88. Shutov, F. A., Chaikin, I. I.: Extreme character of sorptional water absorption by rigid polyurethane foams. Proizvodstvo i pererabotka plasticheskikh mass i sinteticheskikh smol 1979, No. 6, 17 (in Russian)

    Google Scholar 

  89. Gregg, S. J., Sing, K. S. W.: Adsorption surface area and porosity. London, New York: Academic Press 1967

    Google Scholar 

  90. Fedodeev, V. I.: Estimation of properties and state of water in large-pore disperse substances. Kolloid. Zh. 37, 520 (1975) (in Russian)

    CAS  Google Scholar 

  91. Hedlin, C. P.: J. Cell. Plast. 13, 313 (1977)

    Article  CAS  Google Scholar 

  92. Kirby, D.: Plast. Rubber Int. 3, 167 (1978)

    Google Scholar 

  93. Kudryacheva, G. M., Kozhevnikov, I. G.: Thermophysical characteristics of plastic foams at 90–360 K. Plast. Massy 1974, No. 5, 39 (in Russian)

    Google Scholar 

  94. Barnatt, A., Dyke, R., Hillier, K.: Plastica 32, 14 (1979)

    CAS  Google Scholar 

  95. Hingst, U.: Forsch. Ingenieur Wiss. 43, 185 (1977)

    Article  CAS  Google Scholar 

  96. Borodin, M. Ya.: Electrical properties of plastic foams. In: Plastic foams. Popov, V. A. (ed.), pp. 61–72. Moscow: Oborongiz 1959 (In Russian)

    Google Scholar 

  97. Kopatsky, N. A., Chaikin, I. I.: Theoretical formula for calculating dielectric permeability of plastic foams. All-Union Conf. Physics of Dielectrics, Leningrad USSR, 1973 (in Russian)

    Google Scholar 

  98. Brown, W. F.: Dielectrics. Berlin, Göttingen, Heidelberg: Springer 1956

    Google Scholar 

  99. Sazhin, B. I.: Electrical properties of polymers. Leningrad: Khimiya 1970 (in Russian)

    Google Scholar 

  100. Shutov, F. A., Platonov, M. P.: On the mechanism of dielectric losses of gas-filled polymers in connection with specific features of their macrostructure. All-Union Conf. Physics of Dielectrics, Leningrad 1973 (In Russian)

    Google Scholar 

  101. Klemper, D., Karasz, F. E.: J. Elastoplast. 4, 180 (1972)

    Google Scholar 

  102. Trostyanskaya, E. B., Chernikova, O. D.: Dielectric Properties of Phenolic and Epoxide Resins in Media with High Humidity. Plast. Massy 1976, No. 2, 64 (in Russian)

    Google Scholar 

  103. Warfield, R. W.: J. Appl. Polym. Sci. 19, 1205 (1975)

    Article  CAS  Google Scholar 

  104. Harwood, C., Wostenholm, G. H., Yates, B.: J. Polym. Sci. Phys. Ed. 16, 759 (1978)

    Article  CAS  Google Scholar 

  105. Manegold, E.: Schaum. Heidelberg: Straßenbau Chem. und Techn. Verlag, 1953

    Google Scholar 

  106. Kerner, E. H.: Proc. Phys. Soc. 59, 802 (1956)

    Google Scholar 

  107. Odelevsky, V. N.: Theory of generalized conduction of heterogeneous media. Zh. Tekh. Fiz. 21, 667 (1951) (in Russian)

    Google Scholar 

  108. Chistaykov, B. E., Chernina, V. N.: Electroconductivity of liquid foams. Kolloid. Z. 39, 1005 (1977) (in Russian)

    Google Scholar 

  109. Bikerman, J. J.: Foams. Berlin, Heidelberg, New York: Springer 1973

    Google Scholar 

  110. Anonymous: Urethane foams in the TV Receiver. J. Cell. Plast. 13, 290 (1977)

    Google Scholar 

  111. Domkin, V. S.: Electrical properties of gas-filled polymers. All-Union Seminar on Plastic Foams, Leningrad USSR, 1975 (in Russian)

    Google Scholar 

  112. Palmer, P. J.: J. Cell. Plast. 9, 182 (1973)

    Article  CAS  Google Scholar 

  113. Kutschers, K., Zimmermann, P.: Langzeitdurchschlag in Polyurethan Schaumstoffe. Wiss.-Techn. Mitt. Inst, „Prüffeld Elek. Hochleistungstech.“ 18, 28 (1977)

    Google Scholar 

  114. Domkin, V. S.: Electrical properties of plastic foams and methods of estimation. In: Methods of physico-mechanical testing of plastic foams, pp. 48–53. Moscow: NIITEKhIM 1976, (in Russian)

    Google Scholar 

  115. Giessner, B. G.: Epoxy foam — a novel electrical insulation material. pp. 336–339. Proc. 13th Electrical/Electronics Insulation Conf., New York, 1977

    Google Scholar 

  116. Zorll, U.: Organische Beschichtungen zur Oberflächenreinhaltung. Ind.-Anz. 100, 30 (1978)

    CAS  Google Scholar 

  117. Toyo Rubber Chem.: Antistatic Polyurethane Foam Preparation. Japan Pat. 77,035,399 (1977)

    Google Scholar 

  118. Chaikin, I. I., Shutov, F. A.: Static electrization of polyurethane foams. All-Union Conf. Polyurethanes, Vladimir/USSR, 1979 (in Russian)

    Google Scholar 

  119. Shutov, F. A.: On the use of electrical insulation from phenolic foams in high humidity media. All-Union Seminar on Plastic Foams, Leningrad 1975 (in Russian)

    Google Scholar 

  120. Vanin, B. V.: Calculation of dielectric properties of disperse materials. Elektrichestvo 1965, 54 (in Russian)

    Google Scholar 

  121. Chaikin, I. I., Shutov, F. A.: Electroconductivity and static electrization of plastic foams. Proizvodstvo i pererabotka plasticheskikh mass i sinteticheskikh smol 1979, No. 7, 12 (in Russian)

    Google Scholar 

  122. Sokolov, V. A. et al.: Electrical Properties of Epoxide Foams. Plast. Massy 1977, No. 2, 68 (in Russian)

    Google Scholar 

  123. Durasova, T. F., Moiseev, A. A.: Electrical properties of plastic foams at various humidity. Plast. Massy 1971, No. 9, 19 (in Russian)

    Google Scholar 

  124. Bono, P., Gatland, C.: Frontiers of Space. New York: MacMillan Co. 1973

    Google Scholar 

  125. Larkins, C. D.: Southern Africa 7, 41 (1977)

    Google Scholar 

  126. Pokrovsky, L. I.: Production and use of foamed polymers. Plast. Massy 1978, No. 4, 68 (in Russian)

    Google Scholar 

  127. Kiya-Oglu, N. V., Tsokolaeva, N. M., Stanovskaya, E. R.: Trends in production and consumption of Plastic Foams. All-Union Conf. Polyurethanes, Vladimir/USSR, 1979 (in Russian)

    Google Scholar 

  128. Tarakanov, O. G.: Specific features of the physical chemistry and mechanics of polyurethane foams. All Union Conference on Polyurethanes, Vladimir/USSR, 1979 (in Russian)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

To the Memory of my Friend and Teacher Professor Alfred A. Berlin

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer-Verlag

About this paper

Cite this paper

Shutov, F.A. (1981). Foamed polymers based on reactive oligomers. In: Polymer Products. Advances in Polymer Science, vol 39. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-10218-3_1

Download citation

  • DOI: https://doi.org/10.1007/3-540-10218-3_1

  • Received:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-10218-2

  • Online ISBN: 978-3-540-38282-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics