Skip to main content

The Biophysics of the Fish Lateral Line

  • Chapter
  • First Online:
The Lateral Line System

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 48))

Abstract

The fish lateral line system is unique in its ability to sense water flow with two types of receptors, the canal neuromast (CN) and superficial neuromast (SN). Both include mechanosensory hair cells in the skin that are coupled to an extracellular cupula, which is deflected by flow. Differences in the biophysics of these receptors cause them to detect distinct features of a stimulus. CNs are recessed within channels and possess hundreds of hair cells and a cupula that deflects as a rigid body. These features facilitate sensitivity to flow acceleration with low-pass filtering. The cutoff frequency for this filter is in the hundreds of Hertz, which allows the CNs to respond to the rapid changes in flow from a variety of biological stimuli. In contrast, SNs possess tens of hair cells and an elongated cupula that protrudes from the surface of the body. These receptors sense the velocity of flow with low-pass filtering with a cutoff frequency in the “tens” of Hertz. This allows for sensing the velocity of biological signals with high fidelity. Although CNs are more than an order of magnitude more sensitive, SNs maintain sensitivity to stimuli at high intensity. Therefore, the two receptors encompass distinct regimes of stimulus intensity and frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bleckmann, H., Breithaupt, T., Blickhan, R., & Tautz, J. (1991). The time course and frequency content of hydrodynamic events caused by moving fish, frogs, and crustaceans. Journal of Comparative Physiology A, 168, 749–757.

    CAS  Google Scholar 

  • Budelmann, B. (1989). Hydrodynamic receptor systems in invertebrates. In S. Coombs, P. Görner, & H. Mϋnz (Eds.), The mechanosensory lateral line (pp. 607–631). New York: Springer.

    Chapter  Google Scholar 

  • Budelmann, B., & Bleckmann, H. (1988). A lateral line analogue in cephalopods: Water waves generate microphonic potentials in the epidermal head lines of Sepia and Lolliguncula. Journal of Comparative Physiology A, 164, 1–5.

    Article  CAS  Google Scholar 

  • Chagnaud, B. P., Bleckmann, H., & Engelmann, J. (2006). Neural responses of goldfish lateral line afferents to vortex motions. The Journal of Experimental Biology, 209, 327–342.

    Article  PubMed  Google Scholar 

  • Coombs, S., & Janssen, J. (1989). Peripheral processing by the lateral line of the mottled sculpin (Cottus bairdi). In S. Coombs, P. Görner, & H. Mϋnz (Eds.), The mechanosensory lateral line (pp. 299–319). New York: Springer.

    Chapter  Google Scholar 

  • Coombs, S., & Janssen, J. (1990). Behavioral and neurophysiological assessment of lateral line sensitivity in the mottled sculpin, Cottus-bairdi. Journal of Comparative Physiology A, 167, 557–567.

    Article  CAS  Google Scholar 

  • Coombs, S., Janssen, J., & Webb, J. F. (1988). Diversity of lateral line systems: Evolutionary and functional considerations. In J. Atema, R. R. Fay, A. N. Popper, & W. N. Tavolga (Eds.), Sensory biology of aquatic animals (pp. 553–593). New York: Springer.

    Chapter  Google Scholar 

  • Coombs, S., Braun, C. B., & Donovan, B. (2001). The orienting response of Lake Michigan mottled sculpin is mediated by canal neuromasts. Journal of Experimental Biology, 204, 337–348.

    CAS  PubMed  Google Scholar 

  • Ćurčić-Blake, B., & van Netten, S. (2006). Source location encoding in the fish lateral line canal. Journal of Experimental Biology, 209, 1548–1559.

    Article  PubMed  Google Scholar 

  • Denton, E. J., & Gray, J. (1983). Mechanical factors in the excitation of clupeid lateral lines. Proceedings of the Royal Society B: Biological Sciences, 218, 1–26.

    Article  CAS  Google Scholar 

  • Denton, E. J., & Gray, J. A. B. (1988). Mechanical factors in the excitation of the lateral lines of fishes. In J. Atema, R. R. Fay, A. N. Popper, & W. N. Tavolga (Eds.), Sensory biology of aquatic animals (pp. 595–618). New York: Springer.

    Chapter  Google Scholar 

  • Denton, E., & Gray, J. (1989). Some observations on the forces acting on neuromasts in fish lateral line canals. In S. Coombs, P. Görner, & H. Mϋnz (Eds.), The mechanosensory lateral line (pp. 229–246). New York: Springer.

    Chapter  Google Scholar 

  • Dijkgraaf, S. (1963). The functioning and significance of the lateral-line organs. Biological Reviews, 38, 51–105.

    Article  CAS  PubMed  Google Scholar 

  • Dinklo, T. (2005). Mechano- and electrophysiological studies on cochlear hair cells and superficial lateral line cupulae. Doctoral dissertation, University of Groningen.

    Google Scholar 

  • Engelmann, J., Hanke, W., Mogdans, J., & Bleckmann, H. (2000). Neurobiology: Hydrodynamic stimuli and the fish lateral line. Nature, 408, 51–52.

    Article  CAS  PubMed  Google Scholar 

  • Engelmann, J., Hanke, W., & Bleckmann, H. (2002). Lateral line reception in still- and running water. Journal of Comparative Physiology A, 188, 513–526.

    Article  CAS  Google Scholar 

  • Feitl, K. E., Ngo, V., & McHenry, M. J. (2010). Are fish less responsive to a flow stimulus when swimming? The Journal of Experimental Biology, 213, 3131–3137.

    Article  PubMed  Google Scholar 

  • Görner, P. (1963). Untersuchungen zur Morphologie und Elektrophysiologie des Seitenlinienorgans vom Krallenfrosch (Xenopus laevis Daudin). Zeitschrift für vergleichende Physiologie, 47, 316–338.

    Google Scholar 

  • Goulet, J., Engelmann, J., Chagnaud, B. P., Franosch, J.-M. P., Suttner, M. D., & Hemmen, J. L. (2008). Object localization through the lateral line system of fish: Theory and experiment. Journal of Comparative Physiology A, 194, 1–17.

    Article  Google Scholar 

  • Goulet, J., van Hemmen, J. L., Jung, S. N., Chagnaud, B. P., Scholze, B., & Engelman, J. (2012). Temporal precision and reliability in the velocity regime of a hair-cell sensory system: The mechanosensory lateral line of goldfish, Carassius auratus. Journal of Neurophysiology, 107, 2581–2593.

    Article  PubMed  Google Scholar 

  • Hudspeth, A. J. (1989). How the ear’s works work. Nature, 341, 397–404.

    Article  CAS  PubMed  Google Scholar 

  • Jielof, R., Spoor, A., & de Vries, H. (1952). The microphonic activity of the lateral line. Journal of Physiology, 116, 137–157.

    CAS  PubMed  Google Scholar 

  • Kalmijn, A. J. (1988). Hydrodynamic and acoustic field detection. In J. Atema, R. R. Fay, A. N. Popper, & W. N. Tavolga (Eds.), Sensory biology of aquatic animals (pp. 83–130). New York: Springer.

    Chapter  Google Scholar 

  • Kalmijn, A. J. (1989). Functional evolution of lateral line and inner ear sensory systems. In S. Coombs, P. Görner, & H. Münz (Eds.), The mechanosensory lateral line (pp. 187–215). New York: Springer.

    Google Scholar 

  • Kramer, G. (1933). Sinnesleistung und das Orientierungsverhalten von Xenopus laevis. Zoologische Jahrbücher, Abteilung für Anatomie und Ontogenie der Tiere, 52, 629–676.

    Google Scholar 

  • Kroese, A. B. A., & van Netten, S. M. (1989). Sensory transduction in lateral line hair cells. In S. Coombs, P. Görner, & H. Mϋnz (Eds.), The mechanosensory lateral line (pp. 265–284). New York: Springer.

    Chapter  Google Scholar 

  • Kroese, A. B. A., & Schellart, N. A. M. (1992). Velocity- and acceleration-sensitive units in the trunk lateral line of trout. Journal of Neurophysiology, 68, 2212–2221.

    CAS  PubMed  Google Scholar 

  • Kroese, A. B. A., van der Zalm, J. M., & van den Bercken, J. (1978). Frequency response of the lateral-line organ of Xenopus laevis. Pfluegers Archiv, 375, 167–175.

    Article  CAS  PubMed  Google Scholar 

  • Kroese, A. B. A., Das, A., & Hudspeth, A. J. (1989). Blockage of the transduction channels of hair cells in the bullfrog’s sacculus by aminoglycoside antibiotics. Hearing Research, 37, 203–217.

    Article  CAS  PubMed  Google Scholar 

  • Kuiper, J. W. (1956). The microphonic effect of the lateral line organ. PhD thesis, University of Groningen, The Netherlands.

    Google Scholar 

  • Lathi, B. (1998). Signal processing and linear systems. New York: Oxford University Press.

    Google Scholar 

  • Liao, J. C. (2010). Organization and physiology of posterior lateral line afferent neurons in larval zebrafish. Biology Letters, 6, 402–405.

    Article  PubMed Central  PubMed  Google Scholar 

  • Marcotti, W., van Netten, S. M., & Kros, C. (2005). The aminoglycoside antibiotic dihydrostreptomycin rapidly enters mouse outer hair cells through the mechano-electrical transducer channels. Journal of Physiology, 567, 505–521.

    Article  CAS  PubMed  Google Scholar 

  • McHenry, M. J., & van Netten, S. M. (2007). The flexural stiffness of superficial neuromasts in the zebrafish (Danio rerio) lateral line. Journal of Experimental Biology, 210, 4244–4253.

    Article  PubMed  Google Scholar 

  • McHenry, M. J., Strother, J. A., & van Netten, S. M. (2008). Mechanical filtering by the boundary layer and fluid–structure interaction in the superficial neuromast of the fish lateral line system. Journal of Comparative Physiology A, 194, 795–810.

    Article  Google Scholar 

  • McHenry, M. J., Feitl, K. E., Strother, J. A., & Van Trump, W. J. (2009). Larval zebrafish rapidly sense the water flow of a predator’s strike. Biology Letters 5, 477–497.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Montgomery, J. C. (1989). Lateral line detection of planktonic prey. In S. Coombs, P. Görner, & H. Mϋnz (Eds.), The mechanosensory lateral line (pp. 561–574). New York: Springer.

    Chapter  Google Scholar 

  • Montgomery, J. C., Baker, C., & Carton, A. (1997). The lateral line can mediate rheotaxis in fish. Nature, 389, 960–963.

    Article  CAS  Google Scholar 

  • Montgomery, J. C., McDonald, F., Baker, C. F., Carton, A. G., & Ling, N. (2003). Sensory integration in the hydrodynamic world of rainbow trout. Proceedings of the Royal Society B: Biological Sciences, 270, S195–S197.

    Article  PubMed  Google Scholar 

  • Mϋnz, H. (1989) Functional organization of the lateral line periphery. In S. Coombs, P. Görner, & H. Mϋnz (Eds.), The mechanosensory lateral line (pp. 285–297). New York: Springer.

    Chapter  Google Scholar 

  • Schlichting, H. (1979). Boundary-layer theory. New York: Springer-Verlag.

    Google Scholar 

  • Song, J., Yan, H., & Popper, A. (1995). Damage and recovery of hair cells in fish canal (but not superficial) neuromasts after gentamicin exposure. Hearing Research, 91, 63–71.

    Article  CAS  PubMed  Google Scholar 

  • Stewart, W. J., & McHenry, M. J. (2010). Sensing the strike of a predator fish depends on the specific gravity of a prey fish. The Journal of Experimental Biology, 213, 3769–3777.

    Article  PubMed  Google Scholar 

  • Stewart, W. J., Cardenas, G. S., & McHenry, M. J. (2013) Zebrafish larvae evade predators by sensing water flow. The Journal of Experimental Biology, 216, 388–398.

    Article  PubMed  Google Scholar 

  • Tsang, P. T. S. K. (1997). Laser interferometric flow measurements in the lateral line organ. Doctoral dissertation, University of Groningen.

    Google Scholar 

  • van Netten, S. M. (1988). Laser interferometer microscope for the measurement of nanometer vibrational displacements of a light-scattering microscopic object. The Journal of the Acoustical Society of America, 83, 1667–1674.

    Article  Google Scholar 

  • van Netten, S. M. (1991). Hydrodynamics of the excitation of the cupula in the fish canal lateral line. The Journal of the Acoustical Society of America, 89, 310–319.

    Article  Google Scholar 

  • van Netten, S. M. (2006). Hydrodynamic detection by cupulae in a lateral line canal: Functional relations between physics and physiology. Biological Cybernetics, 94, 67–85.

    Article  PubMed  Google Scholar 

  • van Netten, S. M., & Kroese, A. B. A. (1987). Laser interferometric measurements on the dynamic behavior of the cupula in the fish lateral line. Hearing Research, 29, 55–62.

    Article  PubMed  Google Scholar 

  • van Netten, S. M., Dinklo, T., Marcotti, W., & Kros, C. J. (2003). Channel gating forces govern accuracy of mechano-electrical transduction in hair cells. Proceedings of the National Academy of Sciences of the USA, 100, 15510–15515.

    Article  PubMed  Google Scholar 

  • Van Trump, W. J., & McHenry, M. J. (2008). The effect of morphological variation on the frequency response of superficial neuromasts in zebrafish (Danio rerio). Journal of Experimental Biology, 211, 2105–2115.

    Article  PubMed  Google Scholar 

  • Watson, G., & Hessinger, D. (1989). Cnidocyte mechanoreceptors are tuned to the movements of swimming prey by chemoreceptors. Science, 243, 1589–1591.

    Article  CAS  PubMed  Google Scholar 

  • Weber, D. D., & Schiewe, M. H. (1976). Morphology and function of the lateral line of juvenile steelhead trout in relation to gas-bubble disease. Journal of Fish Biology, 9, 217–233.

    Article  Google Scholar 

  • Wiersinga-Post, J. E. C., & van Netten, S. M. (2000). Temperature dependency of cupular mechanics and hair cell frequency selectivity in the fish canal lateral line organ, Journal of Comparative Physiology A, 186, 949–956.

    Article  Google Scholar 

  • Wubbels, R. J. (1992). Afferent response of a head canal neuromast of the ruff (Acerina cernua) lateral line. Comparative Biochemistry and Physiology A, 102, 19–26.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sietse M. van Netten .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

van Netten, S.M., McHenry, M.J. (2013). The Biophysics of the Fish Lateral Line. In: Coombs, S., Bleckmann, H., Fay, R., Popper, A. (eds) The Lateral Line System. Springer Handbook of Auditory Research, vol 48. Springer, New York, NY. https://doi.org/10.1007/2506_2013_14

Download citation

Publish with us

Policies and ethics