Skip to main content

Contrast Medium-Induced Nephropathy

  • Chapter
Contrast Media

Part of the book series: Medical Radiology ((Med Radiol Diagn Imaging))

Abstract

A sudden drop in renal function after exposure to contrast media was first described more than 60 years ago. Contrast medium-induced nephropathy (CIN) is still considered an important acute adverse reaction. Despite both clinical and experimental research, its pathophysiology is still unclear. It occurs to the same extent after all non-ionic iodine-based contrast agents. Patients at increased risk are those with moderately and severely reduced renal function. Volume expansion seems to reduce the frequency, but no pharmacological manipulation has been proven to be helpful. This chapter reviews the recent information on CIN.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alamartine E, Phayphet M, Thibaudin D et al (2003) Contrast medium-induced acute renal failure and cholesterol embolism after radiological procedures: incidence, risk factors, and compliance with recommendations. Eur J Intern Med 14:426–431

    PubMed  Google Scholar 

  • Allaqaband S, Tumuluri R, Malik AM et al (2002) Prospective randomized study of N-acetylcysteine, fenoldopam and saline for prevention of radiocontrast-induced nephropathy. Catheter Cardiovasc Intervent 57:279–283

    Google Scholar 

  • Almen T, Frennby B, Sterner G (1999) Determination of glomerular filtration rate (GFR) with contrast media. In: Thomsen HS, Muller RN, Mattrey RF (eds) Trends in contrast media. Springer, Berlin, pp 81–94

    Google Scholar 

  • Alonso A, Lau J, Jaber BL et al (2004) Prevention of contrast nephropathy with N-acetylcysteine in patients with chronic kidney disease: a meta-analysis of randomized controlled trials. Am J Kidney Dis 43:1–9

    CAS  PubMed  Google Scholar 

  • Andrew E, Berg KJ (2004) Nephrotoxic effects of X-ray contrast media. J Toxicol Clin Toxicol 42:325–332

    CAS  PubMed  Google Scholar 

  • Asif A, Epstein M (2004) Prevention of radiocontrast-induced nephropathy. Am J Kidney Dis 44:12–24

    CAS  PubMed  Google Scholar 

  • Aspelin P, Aubry P, Fransson S-G et al (2003) Nephrotoxic effects in high-risk patients undergoing angiography. N Engl J Med 348:491–499

    CAS  PubMed  Google Scholar 

  • Bader BD, Berger ED, Heede MB et al (2004) What is the best hydration regimen to prevent contrast media-induced nephrotoxicity? Clin Nephrol 62:1–7

    CAS  PubMed  Google Scholar 

  • Bagshaw SM, Ghali WA (2004) Acetylcysteine for prevention of contrast induced nephropathy after intravascular angiography: a systematic review and meta-analysis. BMC Med 2:38

    PubMed  PubMed Central  Google Scholar 

  • Bagshaw SM, Ghali WM (2005) Theophylline for prevention of radiocontrast nephropathy: a systematic review and meta-analysis. Arch Intern Med 176:1087–1093

    Google Scholar 

  • Bagshaw SM, McAlister FA, Manns BJ, Gahli WA (2006) Acetylcysteine in the prevention of contrast-induced nephropathy. Arch Intern Med 166:161–166

    CAS  PubMed  Google Scholar 

  • Bailey CJ, Turner RC (1996) Metformin. New Engl J Med 334:574–579

    CAS  PubMed  Google Scholar 

  • Balemans CE, Reichert IJ, van Scheven BI et al (2012) Epidemiology of contrast material induced nephropathy in the era of hydration. Radiology 263:706–713

    PubMed  Google Scholar 

  • Band RA, Gaieski DF, Mills AM et al (2007) Discordance between serum creatinine and creatinine clearance for identification of ED patients with abdominal pain at risk for contrast induced nephropathy. Am J Emerg Med 25:268–272

    PubMed  Google Scholar 

  • Barrett BJ, Parfrey PS (2006) Preventing nephropathy induced by contrast medium. N Engl J Med 354:379–386

    CAS  PubMed  Google Scholar 

  • Barrett BJ, Katzberg RW, Thomsen HS et al (2006) Contrast induced nephropathy in patients with chronic kidney disease undergoing computed tomography: a double blind comparison of iodixanol and iopamidol. Invest Radiol 41:815–821

    CAS  PubMed  Google Scholar 

  • Bartels ED, Brun GC, Gammeltoft A, Gjørup PA (1954) Acute anuria following intravenous pyelography in a patient with myelomatosis. Acta Med Scand 40:297–302

    Google Scholar 

  • Bartholomew BA, Harjai KJ, Dukkipati S et al (2004) Impact of nephropathy after percutaneous coronary intervention and a method for risk stratification. Am J Cardiol 93:1515–1519

    PubMed  Google Scholar 

  • Becker J, Babb J, Serrano M (2013) Glomerular filtration rate in evaluation of the effect of iodinated contrast media on renal function. AJR Am J Roentgenol 200:822–826

    PubMed  Google Scholar 

  • Benigni A, Remuzzi G (1999) Endothelin antagonists. Lancet 353:133–138

    CAS  PubMed  Google Scholar 

  • Berns AS (1989) Nephrotoxicity of contrast media. Kidney Int 36:730–740

    CAS  PubMed  Google Scholar 

  • Bellomo R, Ronco C, Kellum JA et al (2004) Acute dialysis quality initiative workgroup: acute renal failure: definition, outcome measures, animal models, fluid therapy and information technology needs. the second international consensus conferences of the acute dialysis quality initiative (ADQI) group. Crit Care 8:R204–R212

    PubMed  Google Scholar 

  • Bettmann MA (2005) Contrast medium-induced nephropathy: critical review of the existing clinical evidence. Nephrol Dial Transplant 20(Suppl 1):i12–i17

    PubMed  Google Scholar 

  • Biondi-Zoccai GG, Lotrionte M, Abbate A et al (2006) Compliance with QUOROM and quality of reporting over overlapping meta-analysis on the role of acetylcysteine in the prevention of contrast associated nephropathy: case study. Br Med J 332:202–209

    Google Scholar 

  • Blaufox MD, Aurell M, Bubeck B et al (1996) Report of the radionuclide in nephrourology committee on renal clearance. J Nucl Med 37:1883–1890

    CAS  PubMed  Google Scholar 

  • Bolen S, Feldman L, Vassy J et al (2007) Systematic review: comparative effectiveness and safety of oral medications for type 2 diabetes mellitus. Ann Intern Med 147:386–399

    PubMed  Google Scholar 

  • Bostrom AG, Kronenberg F, Ritz E (2002) Predictive performance of renal function equations for patients with chronic kidney disease and normal serum creatinine levels. J Am Soc Nephrol 13:2140–2144

    Google Scholar 

  • Botev R, Mallie P, Wetzels J, Couch C (2011) The clinician and estimated glomerular filtration rate. Clin J Am Soc Nephrol 6:937–950

    PubMed  Google Scholar 

  • Brar SS, Hiremath S, Dangas G et al (2009) Sodium bicarbonate for the prevention of contrast induced-acute kidney injury: a systematic review and meta-analysis. Clin J Am Soc Nephrol 4:1584–1592

    CAS  PubMed  Google Scholar 

  • Briguori C, Colombo A, Airoldi F et al (2004a) N-acetylcysteine versus fenoldopam mesylate to prevent contrast agent-associated nephrotoxicity. J Am Coll Cardiol 44:762–765

    CAS  PubMed  Google Scholar 

  • Briguori C, Colombo A, Violante A et al (2004b) Standard versus double dose of N-acetylcysteine to prevent contrast agent associated nephrotoxicity. Eur Heart J 25:206–211

    CAS  PubMed  Google Scholar 

  • Briguori C, Colombo A, Airoldi F et al (2006) Nephrotoxicity of low-osmolality versus iso-osmolality contrast agents: impact of N-acetylcysteine. Kidney Int 68:2250–2255

    Google Scholar 

  • Briguori C, Airoldi F, D’Andrea D et al (2007) Renal insufficiency following contrast media administration trial (REMEDIAL): a randomized comparison of 3 preventive strategies. Circulation 115:1211–1217

    CAS  PubMed  Google Scholar 

  • Carraro M, Mancini W, Artero M et al (1996) Dose effect of nitrendipine on urinary enzymes and microproteins following nonionic radiocontrast administration. Nephrol Dial Transplant 11:444–448

    CAS  PubMed  Google Scholar 

  • Carraro M, Malalan F, Antonione R et al (1998) Effects of a dimeric vs a monomeric nonionic contrast medium on renal function in patients with mild to moderate insufficiency: a double blind, randomized trial. Eur Radiol 8:144–147

    CAS  PubMed  Google Scholar 

  • Cavusoglu E, Chabra S, Marmur JD et al (2004) The prevention of contrast-induced nephropathy in patients undergoing percutaneous coronary intervention. Minerva Cardioangio 52:419–432

    CAS  Google Scholar 

  • Chalmers N, Jackson RW (1999) Comparison of iodixanol and iohexol in renal impairment. Br J Radiol 72:701–703

    CAS  PubMed  Google Scholar 

  • Chen Y, Hu S, Liu Y et al (2012) Renal tolerability of iopromide and iodixanol in 562 renally impaired patients undergoing cardiac catheterisation: the DIRECT study. EuroIntervention 8:830–838

    CAS  PubMed  Google Scholar 

  • Chertow GM, Burdich E, Honour M et al (2005) Acute kidney injury, mortality, length of stay, and costs in hospitalized patients. J Am Soc Nephrol 16:3365–3370

    Google Scholar 

  • Cheruvu B, Henning K, Mulligan J et al (2007) Iodixanol: risk of subsequent contrast nephropathy in cancer patients with underlying renal insufficiency undergoing diagnostic computed tomography examinations. J Comput Assist Tomogr 31:493–498

    PubMed  Google Scholar 

  • Choyke PL, Cady K, DePollar SL, Austin H (1998) Determination of serum creatinine prior to iodinated contrast media: is it needed in all patients? Tech Urol 4:65–69

    CAS  PubMed  Google Scholar 

  • Chuang F-R, Chen T-C, Wang I-K (2009) Comparison of iodixanol and iohexol in patients undergoing intravenous pyelography: a prospective controlled study. Ren Fail 31:181–188

    CAS  PubMed  Google Scholar 

  • Clavijo LC, Pinto TL, Kuchulakanti PK et al (2006) Effect of a rapid intraarterial infusion of dextrose 5 % prior to coronary angiography on frequency of contrast-induced nephropathy in high-risk patients. Am J Cardiol 97:981–983

    CAS  PubMed  Google Scholar 

  • Cockroft DW, Gault MH (1976) Prediction of creatinine clearance from serum creatinine. Nephron 16:31–41

    Google Scholar 

  • Couchoud C, Pozet N, Labeeuw M, Pouteil-Noble C (1999) Screening early renal failure: cut-off values for serum creatinine as an indicator of renal impairment. Kidney Int 55:1878–1884

    CAS  PubMed  Google Scholar 

  • Cramer BC, Parfrey PS, Hutchinson TA et al (1985) Renal function following infusion of radiologic contrast material: a prospective controlled study. Arch Intern Med 145:87–89

    CAS  PubMed  Google Scholar 

  • Cryer DR, Nicholas SP, Henry DH et al (2005) Comparative outcomes study of metformin intervention versus conventional approach: the COSMIC approach study. Diabetes Care 28:539–543

    CAS  PubMed  Google Scholar 

  • Curham GC (2003) Prevention of contrast nephropathy. JAMA 289:606–608

    Google Scholar 

  • Dai B, Liu Y, Fu L et al (2012) Effect of theophylline on prevention of contrast-induced acute kidney injury: a meta-analysis of randomized controlled trials. Am J Kidney Dis 60:360–370

    CAS  PubMed  Google Scholar 

  • Davenport MS, Khalatbari S, Dillamn JR et al (2013) Contrast material-induced nephrotoxicity and intravenous low-osmolality iodinated contrast material. Radiology 267:94–105

    PubMed  Google Scholar 

  • Davidson CJ, Hlatky M, Morrris KG et al (1989) Cardiovascular and renal toxicity of a nonionic radiographic contrast agent after cardiac catheterization. A prospective trial. Ann Intern Med 110:119–124

    CAS  PubMed  Google Scholar 

  • Dittrich E, Puttinger H, Schillinger M (2006) Effect of radio contrast media on residual function in peritoneal dialysis patients—a prospective study. Nephrol Dial Transplant 21:1334–1339

    PubMed  Google Scholar 

  • Dussol B, Morange S, Loundoun A et al (2006) A randomized trial of saline hydration to prevent contrast nephropathy in chronic renal failure patients. Nephrol Dial Transplant 21:2120–2126

    CAS  PubMed  Google Scholar 

  • Eken C, Kilicaslan I (2007) Differences between various glomerular filtration rate calculation methods in predicting patients at risk for contrast-induced nephropathy. Am J Emerg Med 25:487 (Correspondence)

    Google Scholar 

  • Electronic Medicines Compendium (2012a) www.medicines.org.uk/EMC/medicine/1043/SPC Updated 12-10-10. Accessed 17 Dec 12

  • Electronic Medicines Compendium (2012b) www.medicines.org.uk/EMC/medicine/20952/SPC Updated 23-5-12. Accessed 17 Dec 12

  • Erdogan A, Davidson CJ (2003) Recent clinical trials of iodixanol. Rev Cardiovasc Med 4(Suppl 5):S43–S50

    PubMed  Google Scholar 

  • Erley CM, Duda SH, Rehfuss D et al (1999) Prevention of radiocontrast-media-induced nephropathy in patients with pre-existing renal insufficiency by hydration in combination with the adenosine antagonist theophylline. Nephrol Dial Transplant 14:1146–1149

    CAS  PubMed  Google Scholar 

  • Fishbane S, Durham JH, Marzo K, Rudnick M (2004) N-acetylcysteine in the prevention of radiocontrast-induced nephropathy. J Am Soc Nephrol 15:251–260

    CAS  PubMed  Google Scholar 

  • Fishman EK, Reddan D (2008) What are radiologists doing to prevent contrast-induced nephropathy (CIN) compared with measures supported by current evidence? A survey of European radiologists on CIN associated with computed tomography. Acta Radiol 49:310–320

    CAS  PubMed  Google Scholar 

  • Fliser D, Laville M, Covic A et al (2012) A European Renal Best Practice (ERBP) position statement on the Kidney Disease Improving Global Outcomes (KDIGO) clinical practice guidelines on acute kidney injury: part 1: definitions, conservative management and contrast-induced nephropathy. Nephrol Dial Transplant 27:4263–4273

    PubMed  Google Scholar 

  • From AM, Bartholmai BJ, Williams AW et al (2008) Mortality associated with nephropathy after radiographic contrast exposure. Mayo Clin Proc 83:1095–1100

    PubMed  Google Scholar 

  • Fu N, Lia X, Yang S et al (2013) Risk score for the prediction of contrast-induced nephropathy in elderly patients undergoing percutaneous coronary intervention. Angiology 64:188–194

    PubMed  Google Scholar 

  • Gare M, Haviv YS, Ben-Yehuda A et al (1999) The renal effect of low-dose dopamine in high-risk patients undergoing coronary angiography. J Am Coll Cardiol 34:1682–1688

    CAS  PubMed  Google Scholar 

  • Gleeson T, Bulugahapitiya S (2004) Contrast induced nephropathy. Am J Roentgenol 183:1673–1689

    Google Scholar 

  • Goergen SK, Rumbold G, Compton G, Harris C (2010) Systematic review of current guidelines, and their evidence base, on risk of lactic acidosis after administration of contrast medium for patients receiving metformin. Radiology 254:261–269

    PubMed  Google Scholar 

  • Goldenberg I, Matezky S (2005) Nephropathy induced by contrast media: pathogenesis, risk factors and preventive strategies. CMAJ 172:1461–1467

    PubMed  PubMed Central  Google Scholar 

  • Gomes VO, Lasevitch R, Lima VC et al (2012) Hydration with sodium bicarbonate does not prevent contrast nephropathy: a multicenter clinical trial. Arq Bras Cardiol 99:1129–1134

    CAS  PubMed  Google Scholar 

  • Gruberg L, Mintz GS, Mehran R et al (2000) The prognostic implications of further renal function deterioration with 48 h of interventional coronary procedures in patients with pre-existent chronic renal insufficiency. J Am Coll Cardiol 36:1542–1548

    CAS  PubMed  Google Scholar 

  • Gupta RK, Kapoor A, Tewari S et al (1999) Captopril for prevention of contrast-induced nephropathy in diabetic patients: a randomised study. Indian Heart J 51:521–536

    CAS  PubMed  Google Scholar 

  • Hans SS, Hans BA, Dhillon R et al (1998) Effect of dopamine on renal function after arteriography in patients with pre-existing renal insufficiency. Am Surg 64:432–436

    CAS  PubMed  Google Scholar 

  • Hardiek KJ, Katholi RE, Robbs RS, Katholi CE (2008) Renal effects of contrast media in diabetic patients undergoing diagnostic or interventional coronary angiography. J Diabetes Complications 22:171–177

    PubMed  Google Scholar 

  • Haylor JL, Morcos SK (2000) Endothelin antagonism and contrast nephropathy. Kidney Int 58:2239

    CAS  PubMed  Google Scholar 

  • Heinrich MC, Häberle L, Müller V et al (2009) Nephrotoxicity of iso-osmolar iodixanol compared with nonionic low-osmolar contrast media: meta-analyses of randomized controlled trials. Radiology 250:68–86

    PubMed  Google Scholar 

  • Heinrich MC, Kuhlmann MK, Grgic A et al (2005) Cytotoxic effects of ionic high-osmolar, nonionic monomeric, and nonionic iso-osmolar dimeric iodinated contrast media on renal tubular cells in vitro. Radiology 235:843–849

    PubMed  Google Scholar 

  • Heller CA, Knapp J, Halliday et al (1991) Failure to demonstrate contrast nephrotoxicity. Med J Aust 155:329–332

    Google Scholar 

  • Heyman SN, Rosenberger C, Rosen S (2005) Regional alterations in renal haemodynamics and oxygenation: a role contrast medium-induced nephropathy. Nephrol Dial Transplant 20(Suppl 1):i6–i11

    CAS  PubMed  Google Scholar 

  • Higgins JPT, Thompson SG, Deeks JJ, Altman DG (2003) Measuring inconsistency in meta-analysis. Br Med J 327:557–560

    Google Scholar 

  • Hoffmann U, Fischereder M, Kruger B et al (2004) The value of N-acetylcysteine in the prevention of radiocontrast agent-induced nephropathy seems questionable. J Am Soc Nephrol 15:407–410

    CAS  PubMed  Google Scholar 

  • Hogan SE, L'Allier P, Chetcuti S et al (2008) Current role of sodium bicarbonate-based preprocedural hydration for the prevention of contrast-induced acute kidney injury: a meta-analysis. Am Heart J 156:414–421

    CAS  PubMed  Google Scholar 

  • Holstein A, Stumvoll M (2005) Contraindications can damage your health- is metformin a case in point? Diabetologia 48:2454–2459

    CAS  PubMed  Google Scholar 

  • Hoste EAJ, Doom S, De Waele J et al (2011) Epidemiology of contrast-associated acute kidney injury in ICU patients: a retrospective cohort analysis. Intensive Care Med 37:1921–1931

    PubMed  Google Scholar 

  • Hou SH, Bushinsky DA, Wish JB et al (1983) Hospital acquired renal insufficiency: a prospective study. Am J Med 74:243–248

    CAS  PubMed  Google Scholar 

  • Huber W, Ilgman K, Page M et al (2002) Effect of theophylline on contrast material-induced nephropathy on patients with chronic renal insufficiency: controlled, randomized, double-blinded study. Radiology 223:772–779

    CAS  PubMed  Google Scholar 

  • Ix JH, McCullough CE, Chertow GM (2004) Theophylline for the prevention of radiocontrast nephropathy: a meta-analysis. Nephrol Dial Transplant 19:2747–2753

    CAS  PubMed  Google Scholar 

  • Jabara R, Gadesam RR, Pendyla LK (2009) Impact of the definition utilizes on the rate of contrast-induced nephropathy in percutaneous coronary intervention. Am J Cardiol 103:1657–1662

    PubMed  Google Scholar 

  • Jakobsen JA, Lundby B, Kristoffersen DT et al (1992) Evaluation of renal function with delayed CT after injection of non- ionic monomeric and dimeric contrast media in healthy volunteers. Radiology 182:419–424

    CAS  PubMed  Google Scholar 

  • James MT, Ghali WA, Knudtson ML et al (2011) Alberta Provencial Project for Outcome Assessment in Coronary Heart Disease (APPROACH) Investigators. Associations between acute kidney injury and cardiovascular and renal outcomes after coronary angiography. Circulation 123:409–416

    PubMed  Google Scholar 

  • Jingwei N, Ruiyan Z, Jiansheng Z et al (2006) Safety of isoosmolar dimer during percutaneous coronary intervention. J Interv Radiol 15:327–329

    Google Scholar 

  • Jo S-H, Youn T-J, Koo B-K et al (2006) Renal toxicity evaluation and comparison betweenVisipaque (iodixanol) and Hexabrix (ioxaglate) in patients with renal insufficiency undergoing coronary angiography. The RECOVER study: a randomized controlled trial. J Am Coll Cardiol 48:924–930

    CAS  PubMed  Google Scholar 

  • Joannidis M, Schmid M, Wiedermann CJ (2008) Prevention of contrast media-induced nephropathy by isotonic sodium bicarbonate: a meta-analysis. Wien Klin Wochenschr 120:742–748

    CAS  PubMed  Google Scholar 

  • Katzberg RW (1997) Urography into the 21st century: new contrast media, renal handling, imaging characteristics, and nephrotoxicity. Radiology 204:297–312

    CAS  PubMed  Google Scholar 

  • Katzberg R (2005) Contrast medium-induced nephrotoxicity: which pathways? Radiology 235:752–755

    PubMed  Google Scholar 

  • Katzberg R, Barrett B (2007) Risk of contrast-induced nephropathy with intravenous administration of iodinated contrast media. Radiology 243:622–628

    PubMed  Google Scholar 

  • Kidney Disease: Improving Global Outcomes (KDIGO) (2013) CKD Work Group. KDIGO 2012 Clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int Suppl 3:1–150

    Google Scholar 

  • Kini AS, Mitre CA, Kim M et al (2002) A protocol for prevention of radiographic contrast nephropathy during percutaneous coronary intervention: effect of selective dopamine receptor agonist fenoldopam. Catheter Cardiovasc Interv 55:169–173

    PubMed  Google Scholar 

  • Kim KS, Kim K, Hwang SS et al (2011) Risk stratification nomogram for nephropathy after abdominal contrast-enhanced computed tomography. Am J Emerg Med 29:412–417

    PubMed  Google Scholar 

  • Kim IY, Lee SB, Lee DW et al (2012) Long-term effects of radiocontrast-enhanced computed tomography on the renal function of chronic kidney disease patients. Clin Exp Nephrol 16:755–759

    PubMed  Google Scholar 

  • Kolehmainen H, Soiva M (2003) Comparison of Xenetix 300 and Visispaque 320 in patients with renal failure. Eur Radiol 13:B32–B33

    Google Scholar 

  • Krasuski RA, Beard BM, Geoghagan JD et al (2003) Optimal timing of hydration to erase contrast-associated nephropathy: the OTHER CAN study. J Invasive Cardiol 15:699–702

    PubMed  Google Scholar 

  • Kshirsagar AV, Poole C, Mottl A et al (2004) N-acetylcysteine for the prevention of radiocontrast induced nephropathy: a metaanalysis of prospective controlled trials. J Am Soc Nephrol 15:761–769

    CAS  PubMed  Google Scholar 

  • Kuhn MJ, Chen N, Sahani DV et al (2008) The PREDICT study: a randomized double-blind comparison of contrast-induced nephropathy after low- or isoosmolar contrast agent exposure. Am J Roentgenol 1991:151–157

    Google Scholar 

  • LaBounty TM, Shah M, Raman SV et al (2012) Within-hospital and 30-day outcomes in 107,994 patients undergoing invasive coronary angiography with different low-osmolar iodinated contrast media. Am J Cardiol 109:1594–1599

    PubMed  Google Scholar 

  • Lameire NH (1997) The impact of residual renal function on the adequacy of peritoneal dialysis. Nephron 77:13–28

    CAS  PubMed  Google Scholar 

  • Laskey W, Aspelin P, Davidson C et al (2009) Nephrotoxicity of iodixanol versus iopamidol in patients with chronic kidney disease and diabetes mellitus undergoing coronary angiographic procedures. Am Heart J 158:822–828

    CAS  PubMed  Google Scholar 

  • Ledermann HP, Mengiardi B, Schmid A, Froehlich JM (2010) Screening for renal insufficiency following ESUR guidelines with on-site creatinine measurements in an outpatient setting. Eur Radiol 20:1926–1933

    CAS  PubMed  Google Scholar 

  • Levey AS, Bosch JP, Lewis JB et al (1999) A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Ann Intern Med 130:461–470

    CAS  PubMed  Google Scholar 

  • Levey AS, Stevens LA, Schmid CH et al (2009) A new equation to estimate glomerular filtration rate. Ann Intern Med 150:604–612

    PubMed  PubMed Central  Google Scholar 

  • Liu R, Nair D, Ix J et al (2005) N-acetylcysteine and contrast- induced nephropathy: systematic review and metaanalysis. J Gen Intern Med 20:193–200

    PubMed  PubMed Central  Google Scholar 

  • Love L, Johnson MS, Bresler ME et al (1994) The persistent computed tomography nephrogram: its significance in the diagnosis of contrast-associated nephrotoxicity. Br J Radiol 67:951–957

    CAS  PubMed  Google Scholar 

  • Maeder M, Klein M, Fehr T, Rickli H (2004) Contrast nephropathy: review focusing on prevention. J Am Coll Cardiol 44:1763–1771

    PubMed  Google Scholar 

  • Marenzi G, Lauri G, Assanelli E et al (2004) Contrast-induced nephropathy in patients undergoing primary angioplasty for acute myocardial infarction. J Am Coll Cardiol 44:1780–1785

    PubMed  Google Scholar 

  • Marenzi G, Assanelli E, Marana I et al (2006) N-acetylcysteine and contrast-induced nephropathy in primay angioplasty. N Engl J Med 354:273–278

    Google Scholar 

  • Marenzi G, Ferrari C, Marana I et al (2012) Prevention of contrast nephropathy by furosemide with matched hydration. The MYTHOS (induced diuresis with matched hydration compared to standard hydration for contrast induced nephropathy prevention) Trial. JACC Cardiovasc Interv 5:90–97

    PubMed  Google Scholar 

  • McCarthy CS, Becker JA (1992) Multiple myeloma and contrast media. Radiology 183:519–521

    CAS  PubMed  Google Scholar 

  • McCullough PA, Bertrand ME, Brinker JA, Stacul F (2006a) A meta-analysis of the renal safety of iso-osmolar iodixanol compared with low-osmolar contrast media. J Am Coll Cardiol 48:692–699

    CAS  PubMed  Google Scholar 

  • McCullough PA, Sandberg KR (2003) Epidemiology of contrast induced nephropathy. Rev Cardiovasc Med 4:53–59

    Google Scholar 

  • McCullough PA, Stacul F, Becker CR et al (2006b) Contrast-Induced Nephropathy (CIN) consensus working panel: executive summary. Rev Cardiovasc Med 7(4):177–197

    PubMed  Google Scholar 

  • McCullough PA, Wolyn R, Rocher LL et al (1997) Acute renal failure after coronary intervention: incidence, risk factors and relationship to mortality. Am J Med 103:368–375

    CAS  PubMed  Google Scholar 

  • McDonald JS, McDonald RJ, Comin J et al (2013a) Frequency of acute kidney injury following intravenous contrast administration: a systemic review and meta-analysis. Radiology 267:119–128

    PubMed  Google Scholar 

  • McDonald RJ, McDonald JS, Bida JP et al (2013b) Intravenous contrast material-induced nephropathy: causal or coincident phenomenon? Radiology 267:106–118

    PubMed  Google Scholar 

  • Mehran R, Aymong ED, Nikolsky E et al (2004) A simple risk score for prediction of contrast-induced nephropathy after percutaneous coronary intervention. Development and initial validation. J Am Coll Cardiol 44:1393–1399

    PubMed  Google Scholar 

  • Mehran R, Nikolsky E, Kirtane AJ et al (2009) Ionic low-osmolar versus nonionic iso-osmolar contrast media to obviate worsening nephropathy after angioplasty in chronic renal failure patients: the ICON (Ionic versus non-ionic Contrast to Obviate worsening Nephropathy after angioplasty in chronic renal failure patients) study. JACC Cardiovasc Interv 2:415–421

    PubMed  Google Scholar 

  • Mehta RL, Kellum JA, Shah SV et al (2007) Acute kidney injury network. Acute kidney network; report of an initiative to improved outcomes in acute kidney injury. Crit Care 121:R31

    Google Scholar 

  • Meier P, Ko DT, Tamura A et al (2009) Sodium bicarbonate-based hydration prevents contrast-induced nephropathy: a meta-analysis. BMC Med 7:23

    PubMed  PubMed Central  Google Scholar 

  • Merten GJ, Burgess WP, Gray LV et al (2004) Prevention of contrast induced nephropathy with sodium bicarbonate: a randomized trial. JAMA 291:2328–2338

    CAS  PubMed  Google Scholar 

  • Meschi M, Detrenis S, Musini S et al (2006) Facts and fallacies concerning the prevention of contrast medium induced nephropathy. Crit Care Med 34:2060–2068

    PubMed  Google Scholar 

  • Mitchell RL, Craig JC, Webster AC (2004) Cochrane renal group report. Am J Kidney Dis 43:752–756

    Google Scholar 

  • Michels WM, Grootendorst DC, Verduijn M et al (2010) Performance of the Cockcroft-Gault, MDRD, and new CKD-EPI formulas in relation to GFR, age, and body size. Clin J Am Soc Nephrol 5:1003–1009

    PubMed  Google Scholar 

  • Molitoris BA, Levin A, Warnock DG et al (2007) Improving outcomes of acute kidney injury: report of an initiative. Nat Clin Pract Nephrol 3:439–442

    PubMed  Google Scholar 

  • Morcos SK (1998) Contrast media-induced nephrotoxicity—questions and answers. Br J Radiol 71:357–365

    CAS  PubMed  Google Scholar 

  • Morcos SK (2004) Prevention of contrast media nephrotoxicity—the story so far. Clin Radiol 59:381–389

    CAS  PubMed  Google Scholar 

  • Morcos SK (2005) Prevention of contrast media-induced nephrotoxicity after angiographic procedures. J Vasc Interv Radiol 16:13–23

    PubMed  Google Scholar 

  • Morcos SK, Thomsen HS, Webb JAW and members of contrast media safety committee of the European Society of Urogenital Radiology (ESUR) (1999) Contrast media induced nephrotoxicity: a consensus report. Eur Radiol 9:1602–1613

    Google Scholar 

  • Mueller C, Burkle G, Buerkle HJ et al (2002) Prevention of contrast media-associated nephropathy. Randomized comparison of 2 hydration regimens in 1620 patients undergoing coronary angioplasty. Arch Intern Med 162:329–336

    CAS  PubMed  Google Scholar 

  • Nash K, Hafeez A, Hou S (2002) Hospital-acquired renal insufficiency. Am J Kidney Dis 39:930–936

    PubMed  Google Scholar 

  • Navaneethan SD, Singh S, Appasamy S et al (2009) Sodium bicarbonate therapy for prevention of contrast-induced nephropathy: a systematic review and meta-analysis. Am J Kidney Dis 53:617–627

    CAS  PubMed  Google Scholar 

  • Naughton CA (2008) Drug-induced nephrotoxicity. Am Fam Physician 78:743–750

    PubMed  Google Scholar 

  • Neumayer HH, Junge W, Kufner A, Wenning A (1989) Prevention of radiocontrast-media-induced nephrotoxicity by calcium channel blocker nitrendipine: a prospective randomized clinical trial. Nephrol Dial Transplant 4:1030–1036

    CAS  PubMed  Google Scholar 

  • Newhouse JH, Do Kho, Rao QA, Starren J (2008) Frequency of serum creatinine changes in the absence of iodinated contrast material: implications for studies of contrast nephrotoxicity. AJR Am J Roentgenol 191:376–382

    PubMed  Google Scholar 

  • Nguyen SA, Suranyi P, Ravenel JG et al (2008) Iso-osmolality versus low-osmolality iodinated contrast medium at intravenous contrast-enhanced CT: effect on kidney function. Radiology 248:97–105

    PubMed  Google Scholar 

  • NICE Clinical Guideline CG 87 (2009) Type 2 Diabetes—The management of type 2 diabetes. http://publications.nice.org.uk/type-2-diabetes-cg87/guidance. Updated March 2010. Accessed 17 Dec 12

  • Nicholson T, Downes M (2003) Contrast nephrotoxicity and iso-osmolar contrast agents; implications of NEPHRIC. Clin Radiol 58:659–660

    CAS  PubMed  Google Scholar 

  • Nikolsky E, Mehran R (2003) Understanding the consequences of contrast-induced nephropathy. Rev Cardovasc Med 4(Suppl 5):S10–S18

    Google Scholar 

  • Oldroyd SD, Haylor JL, Morcos SK (1995) Bosentan, an orally active endothelin antagonist: effect on the renal response to contrast media. Radiology 196:661–665

    CAS  PubMed  Google Scholar 

  • Oldroyd SD, Fang L, Haylor JL et al (2000) Effects of adenosine receptor antagonists on the responses to contrast media in the isolated rat kidney. Clin Sci 98:303–311

    CAS  PubMed  Google Scholar 

  • Olsen JC, Salomon B (1996) Utility of the creatinine prior to intravenous contrast studies in the emergency department. J Emerg Med 14:543–546

    CAS  PubMed  Google Scholar 

  • O’Sullivan S, Healy DA, Molony MC et al (2013) The role of N-acetylcysteine in the prevention of contrast-induced nephropathy in patients undergoing peripheral angiography: a structured review and meta-analysis. Angiology doi:10.1177/0003319712467223

  • Pahade JK, LeBedis CA, Raptopoulos VD et al (2011) Incidence of contrast-induced nephropathy in patients with multiple myeloma undergoing contrast-enhanced CT. AJR Am J Roentgenol 196:1094–1101

    PubMed  Google Scholar 

  • Pannu N, Manns B, Lee H, Tonelli M (2004) Systematic review of the impact of N-acetylcysteine on contrast nephropathy. Kidney Int 65:1366–1374

    CAS  PubMed  Google Scholar 

  • Pannu N, Nadim MK (2008) An overview of drug-induced acute kidney injury. Crit Care Med 36(4 Suppl):S216–S223

    CAS  PubMed  Google Scholar 

  • Pannu N, Wiebe N, Tonelli M for the Alberta Kidney Disease Network (2006) Prophylaxis strategies for contrast-induced nephropathy. JAMA 295:2765–2779

    Google Scholar 

  • Parfrey PS, Griffiths SM, Barrett BJ et al (1989) Contrast material-induced renal failure in patients with diabetes mellitus, renal insufficiency or both. New Engl J Med 320:143–149

    CAS  PubMed  Google Scholar 

  • Poletti PA, Saudan P, Platon A et al (2007) I.V. N-acetylcysteine and emergency CT: use of serum creatinine and Cystatin C as markers of radiocontrast nephrotoxicity. Am J Roentgenol 189:687–692

    Google Scholar 

  • Pugh ND, Sissons GR, Ruttley et al (1993) Iodixanol in femoral arteriography (phase III): a comparative double double-blind parallel trial between iodixanol and iopromide. Clin Radiol 47:96–99

    Google Scholar 

  • Recio-Mayoral A, Chaparro M, Pardo B et al (2007) The reno- protective effect of hydration with sodium bicarbonate plus N-acetylcysteine in patients undergoing emergency percutaneous coronary intervention: the RENO study. J Am Coll Cardiol 49:1238–1283

    Google Scholar 

  • Reddan D, Fishman EK (2008) Radiologists’ knowledge and perceptions of the impact of contrast-induced nephropathy and its risk factors when performing computed tomography examinations: a survey of European radiologists. Eur J Radiol 66:235–245

    PubMed  Google Scholar 

  • Reddan D, Laville M, Garovic VD (2009) Contrast-induced nephropathy and its prevention: what do we really know from evidence-based findings? J Nephrol 22:333–351

    CAS  PubMed  Google Scholar 

  • Rudnick MR, Goldfarb S, Wexler L et al (1995) Nephrotoxicity of ionic and nonionic contrast media in 1196 patients: a randomized trial. Kidney Int 47:254–261

    Google Scholar 

  • Sadeghi HM, Stone GW, Grines CL et al (2003) Impact of renal insufficiency in patients undergoing primary angioplasty for acute myocardial infarction. Circulation 108:2769–2775

    PubMed  Google Scholar 

  • Safirstein R, Andrade L, Viera JM (2000) Acetylcysteine and nephrotoxic effects of radiographic contrast agents—a new use for an old drug. N Engl J Med 342:210–211

    Google Scholar 

  • Salpeter S, Greyber E, Pasterank G, Salpeter EE (2010) Risk of fatal and nonfatal lactic acidosis with metformin use in type 2 diabetes mellitus. Cochrane Database Syst Rev 25(1):CD 002967

    Google Scholar 

  • Sambol NC, Chiang J, Lin ET et al (1995) Kidney function and age are both predictors of pharmacokinetics of metformin. J Clin Pharmacol 35:1094–1102

    CAS  PubMed  Google Scholar 

  • Seeliger E, Sendeski M, Rihal CS, Persson PB (2012) Contrast-induced kidney injury: mechanisms, risk factors, and prevention. Eur Heart J 33:2007–2015

    PubMed  Google Scholar 

  • Sharma SK, Kini A (2005) Effect of nonionic radiocontrast agents on the occurrence of contrast-induced nephropathy in patients with mild-moderate chronic renal insufficiency: pooled analysis of the randomized trials. Catheter Cardiovasc Interv 65:386–393

    PubMed  Google Scholar 

  • Shaw JS, Wilmot RL, Kilpatrick ES (2007) Establishing pragmatic estimated GFR thresholds to guide metfromin prescribing. Diabet Med 24:1160–1163

    CAS  PubMed  Google Scholar 

  • Sholy H, Zukerman R, Soni A, Nikolsky E (2012) Contrast induced nephropathy; an update on diagnosis, predictors, implications and preventive strategies. Minerva Med 103:465–486

    CAS  PubMed  Google Scholar 

  • Slocum NK, Grossman PM, Moscucci M (2012) The changing definition of contrast-induced nephropathy and its clinical implications insights from the Blue Cross Blue Shield of Michigan Cardiovascular Consortium (BMC2). Am Heart J 163:829–834

    PubMed  Google Scholar 

  • Solomon R (1998) Contrast medium-induced acute renal failure. Kidney Int 53:230–242

    CAS  PubMed  Google Scholar 

  • Solomon R (2005) The role of osmolality in the incidence of contrast-induced nephropathy: a systematic review of angiographic contrast media in high risk patients. Kidney Int 68:2256–2263

    CAS  PubMed  Google Scholar 

  • Solomon R, DuMouchel W (2006) Contrast media and nephropathy. Findings from systematic analysis and food and drug administration reports of adverse effects. Invest Radiol 41:651–660

    PubMed  Google Scholar 

  • Solomon R, Werner C, Mann D et al (1994) Effects of saline, mannitol and furosemide on acute decreases in renal function induced by radiocontrast agents. N Engl J Med 331:1416–1420

    CAS  PubMed  Google Scholar 

  • Solomon R, Natarajan M, Doucet S et al (2007) The cardiac- angiography in renally impaired patients (CARE) study: a randomized, double blind trial of contrast-induced nephropathy (CIN) in high risk patients. Circulation 115:3189–3196

    PubMed  Google Scholar 

  • Spargias K, Alexopoulos E, Kyrzopoulos S et al (2004) Ascorbic acid prevents contrast mediated nephropathy in patients with renal dysfunction undergoing coronary angiography or intervention. Circulation 110:2837–2842

    CAS  PubMed  Google Scholar 

  • Stacul F, van der Molen AJ, Reimer P et al (2011) Contrast induced nephropathy: updated ESUR Contrast Media Safety committee guidelines. Eur Radiol 21:2327–2541

    Google Scholar 

  • Stang M, Wysowski DK, Butler-Jones D (1999) Incidence of lactic acidosis in metformin users. Diabetes Care 22:925–927

    CAS  PubMed  Google Scholar 

  • Stevens MA, McCullough PA, Tobin KJ et al (1999) A prospective randomized trial of prevention measures in patients at high risk for contrast nephropathy. Results of the P.R.I.N.C.E study. J Am Coll Cardiol 33:403–411

    CAS  PubMed  Google Scholar 

  • Stevens LA, Coresh J, Greene T, Levey AS (2006) Assessing kidney function—measured and estimated glomerular filtration rate. N Engl J Med 354:2473–2483

    CAS  PubMed  Google Scholar 

  • Stone GW, McCullough PA, Tumlin JA et al (2003) Contrast investigators. Fenoldopam mesylate for the prevention of contrast-induced nephropathy: a randomized controlled trial. JAMA 290:2284–2291

    CAS  PubMed  Google Scholar 

  • Stratta P, Izzo C, Canavese C, Quaglia M (2013) Letter to the Editor re: are intravenous injections of contrast media really less nephrotoxic than intra-arterial injections? Eur Radiol 23:1260–1263

    PubMed  Google Scholar 

  • Suzuki H, Kanno Y, Sugahara S (2004) Effects of an angiotensin II receptor blocker, valsartan, on residual renal function in patients on CAPD. Am J Kidney Dis 43:1056–1064

    CAS  PubMed  Google Scholar 

  • Tamura A, Goto Y, Miyamoto K et al (2009) Efficacy of single bolus administration of sodium bicarbonate to prevent contrast induced nephropathy in patients with mild renal insufficiency undergoing an elective coronary procedure. Am J Cardiol 104:921–925

    CAS  PubMed  Google Scholar 

  • Taylor AJ, Hotchkiss D, Morse RW, McCabe J (1998) PREPARED. Preparation for angiography in renal dysfunction: a randomized trial of inpatient vs outpatient hydration protocols for cardiac catheterization in mild-to-moderate renal dysfunction. Chest 114:1570–1574

    CAS  PubMed  Google Scholar 

  • Tepel M, Giet MVD, Schwarzfeld C et al (2000) Prevention of radiographic-contrast-agent-induced reductions in renal function by acetylcysteine. N Engl J Med 343:180–184

    CAS  PubMed  Google Scholar 

  • Thomsen HS (1999) Contrast nephropathy. In: Thomsen HS, Muller RN, Mattrey RF (eds) Trends in contrast media. Springer, Berlin, pp 103–116

    Google Scholar 

  • Thomsen HS (2004) Gadolinium-based contrast media may be nephrotoxic even at approved doses (case report). Eur Radiol 15:749–754

    PubMed  Google Scholar 

  • Thomsen HS, Golman K, Hemmingsen L et al (1993) Contrast medium induced nephropathy: animal experiments. Front Eur Radiol 9:83–108

    Google Scholar 

  • Thomsen HS, Morcos SK, Members of Contrast Media Safety Committee of European Society of Urogenital Radiology (ESUR) (2005) In which patients should serum-creatinine be measured before contrast medium administration? Eur Radiol 15:749–756

    Google Scholar 

  • Thomsen HS, Morcos SK (2006) Contrast-medium-induced nephropathy: is there a new consensus? A review of published guidelines. Eur Radiol 16:1835–1840

    PubMed  Google Scholar 

  • Thomsen HS, Morcos SK (2009) Risk of contrast medium induced nephropathy in high risk patients undergoing MDCT—A pooled analysis of two randomized trials. Eur Radiol 19:891–897

    PubMed  Google Scholar 

  • Thomsen HS, Morcos SK, Almen T et al (2010) Metformin and contrast media (letter). Radiology 256:672–673

    PubMed  Google Scholar 

  • Thomsen HS, Morcos SK, Barrett BJ (2008a) Contrast induced nephropathy: the wheel has turned 360 degrees. Acta Radiol 49:646–657

    CAS  PubMed  Google Scholar 

  • Thomsen HS, Morcos SK, Erley CM et al (2008b) The ACTIVE trial: comparison of the effects on renal function of iomeprol-400 and iodixanol-320 in patients with chronic kidney disease undergoing abdominal computed tomography. Invest Radiol 43:170–178

    CAS  PubMed  Google Scholar 

  • Thomsen HS, Morcos SK, ESUR Contrast Media Safety Committee (1999) Contrast media and metformin: guidelines to diminish the risk of lactic acidosis in non-insulin-dependent-diabetics after administration of contrast media. Eur Radiol 9:738–740

    Google Scholar 

  • Thomsen HS, Reimer P (2014) Intravascular contrast media for radiography, CT, MRI and Ultrasound, Chap 2. In: Adam A, Dixon AK, Gillard JH, Schaefer-Prokop C (eds) Grainger and Allison diagnostic radiology, 6th edn. Oxford: Churchill Livingstone (in press)

    Google Scholar 

  • Tippins RB, Torres WE, Baumgartner BR, Baumgarten DA (2000) Are screening serum creatinine levels necessary prior to outpatient CT examinations? Radiology 216:481–484

    CAS  PubMed  Google Scholar 

  • Toprak O (2006) Angiotension converting emzymes inhibitors and contrast-induced nephropathy. Ren Fail 28:99–100

    Google Scholar 

  • Toprak O, Cirit M, Mayata S et al (2003) The effect of pre-procedural captopril on contrast media induced nephropathy who underwent coronary angiography. Anadolu Kardiyol Derg 3:98–103

    PubMed  Google Scholar 

  • Trivedi HS, Moore H, Nasr S et al (2003) A randomized prospective trial to assess the role of saline hydration on the development of contrast nephrotoxicity. Nephron Clin Pract 93:c29–c34

    CAS  PubMed  Google Scholar 

  • Trivedi H, Foley WD (2010) Contrast-induced nephropathy after a second contrast exposure. Ren Fail 32:786–801

    Google Scholar 

  • Trivedi H, Nadella R, Szabo A (2010) Hydration with sodium bicarbonate for the prevention of contrast-induced nephropathy: a meta-analysis of randomized controlled trials. Clin Nephrol 74:288–296

    CAS  PubMed  Google Scholar 

  • Vaitkus PT, Brar C (2007) N-acetylcysteine in the prevention of contrast induced nephropathy: publication bias perpetuated by meta-analysis. Am Heart J 153:175–280

    Google Scholar 

  • Waikar SS, Bonventre JV (2009) Creatinine kinetics and the definition of acute kidney injury. J Am Soc Nephrol 20:672–679

    CAS  PubMed  Google Scholar 

  • Wang A, Holcslaw T, Bashore TM et al (2000) Exacerbation of radiocontrast nephrotoxicity by endothelin receptor antagonism. Kidney Int 57:1675–1680

    CAS  PubMed  Google Scholar 

  • Warren RE, Strachan MWJ, Wild S, McKnight JA (2007) Introducing glomerular filtration rate (eGFR) into clinical practice in the UK: implications for the use of metformin. Diabet Med 24:494–497

    CAS  PubMed  Google Scholar 

  • Weinstein JM, Heyman S, Brezis M (1992) Potential deleterious effect of furosemide in radiocontrast nephropathy. Nephron 62:413–415

    CAS  PubMed  Google Scholar 

  • Weisberg L, Kurnik PB, Kurnik RC (1994) Risk of radiocontrast nephropathy in patients with and without diabetes mellitus. Kidney Int 45:259–265

    CAS  PubMed  Google Scholar 

  • Weisbord SD, Palevsky PM (2008) Prevention of contrast induced nephropathy with volume expansion. Clin J Am Soc Nephrol 3:273–280

    CAS  PubMed  Google Scholar 

  • Wessely R, Koppara T, Kastrati Aal (2008) Iso-osmolar vs low-osmolar contrast medium in patients with impaired renal function undergoing PCI—CONTRAST. Society for cardiovascular Angiography and Interventions Meeting (SCAI), Chicago, 1 April 2008

    Google Scholar 

  • Yamazaki H, Matsushita M, Inoue T et al (1997a) Renal cortical retention on delayed CT after angiography and contrast associated nephropathy. Br J Radiol 70:897–902

    CAS  PubMed  Google Scholar 

  • Yamazaki H, Oi H, Matsushita M et al (1997b) Lack of correlation between gallbladder opacification in delayed CT and contrast-associated nephropathy. Eur Radiol 7:1328–1331

    CAS  PubMed  Google Scholar 

  • Zagler A, Azadpour M, Mercado C, Hennekens CH (2005) N-acetylcysteine and contrast-induced nephropathy: a meta-analysis of 13 randomized trials. Am Heart J 151:140–145

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henrik S. Thomsen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Thomsen, H.S., Stacul, F., Webb, J.A.W. (2014). Contrast Medium-Induced Nephropathy. In: Thomsen, H., Webb, J. (eds) Contrast Media. Medical Radiology(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/174_2013_902

Download citation

  • DOI: https://doi.org/10.1007/174_2013_902

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36723-6

  • Online ISBN: 978-3-642-36724-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics