Skip to main content

Gadolinium Chelates and Stability

  • Chapter
Contrast Media

Part of the book series: Medical Radiology ((Med Radiol Diagn Imaging))

Abstract

The gadolinium ions which enhance the signals in MR images are very toxic, so in the contrast medium molecule they have to be strongly attached to a chelate to avoid adverse effects. The linear chelate molecules are open chains which can fold and unfold off the gadolinium ion with ease. In contrast, the macrocyclic chelate molecules are rigid rings of almost optimal size to cage the gadolinium ion. Experimental data, both in vitro and in vivo, and clinical observations, have confirmed the lower stability of the linear gadolinium-based molecules compared to the more stable macrocyclic agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Brücher E, Sherry AD (2001) Stability and toxicity of contrast agents. In: Merbach AE, Toth E (eds) The chemistry of contrast agents in medical magnetic resonance imaging. Wiley, Chichester, pp 249–257 (Chap. 6)

    Google Scholar 

  • Cacheris WP, Quay SC, Rocklage SM (1990) The relationship between thermodynamics and the toxicity of gadolinium complexes. Magn Reson Imag 8:467–481

    Article  CAS  Google Scholar 

  • Corot C, Idee JM, Hentsch AM et al (1998) Structure-activity relationship of macrocyclic and linear gadolinium chelates: investigation of transmetallation effect on the zinc-dependent metallopeptidase angiotensin-converting enzyme. J Magn Reson Imag 8:695–702

    Article  CAS  Google Scholar 

  • Dawson P (1999) Gadolinium chelates: chemistry. In: Dawson P, Cosgrove DO, Grainger RG (eds) Textbook of contrast media. Isis Medical Media, Oxford, pp 291-296 (Chapt. 22)

    Google Scholar 

  • Desreux JF, Gilsoul D (1999) Chemical synthesis of paramagnetic complexes. In: Thomsen HS, Muller RN, Mattrey (eds) Trends in contrast media. Springer, Heidelberg, pp 161–169 (Chap. 15)

    Google Scholar 

  • Douthwaite JA, Johnson TS, Haylor JL et al (1999) Effects of transforming growth factor-beta1 on renal extracellular matrix components and their regulating proteins. J Am Soc Nephrol 10:2109–2119

    CAS  PubMed  Google Scholar 

  • Frenzel T, Lengsfeld P, Schirmer H et al (2008) Stability of gadolinium based magnetic resonance imaging contrast agents in human serum at 37 °C. Invest Radiol 43:817–828

    Article  CAS  PubMed  Google Scholar 

  • Fretellier N, Idée JM, Dencausse A et al (2011) Comparative in vivo dissociation of gadolinium chelates in renally impaired rats: a relaxometry study. Invest Radiol 46:292–300

    Article  CAS  PubMed  Google Scholar 

  • Gibby WA, Gibby KA, Gibby WA (2004) Comparison of Gd DTPA-BMA (Omniscan) versus Gd-Hp-DO3A (ProHance) retention in human bone tissue by inductive coupled plasma atomic emission spectroscopy. Invest Radiol 39:138–142

    Article  PubMed  Google Scholar 

  • Green RWF, Krestin GP (2006) Non-tissue specific extra cellular MR contrast media. In: Thomsen (ed) Contrast media. Safety issues and ESUR guidelines. Springer, Heidelberg, pp 107–112 (Chap. 16)

    Google Scholar 

  • Haylor J, Dencausse A, Vickers M et al (2012) Skin gadolinium following MRI contrast agents in a rat model of nephrogenic systemic fibrosis. Radiology 263:107–116

    Article  PubMed  Google Scholar 

  • Idee J-M, Port M, Raynal I et al (2006) Clinical and biological consequences of transmetallation induced by contrast agents for magnetic resonance imaging: a review. Fundam Clin Pharmacol 20:563–576

    Article  CAS  PubMed  Google Scholar 

  • Kimura J, Ishguchi T, Matsuda J et al (2005) Human comparative study of zinc and copper excretion via urine after administration of magnetic resonance imaging contrast agents. Radiation Med 23:322–326

    Google Scholar 

  • Kumar K (1997) Macrocyclic polyamino carboxylate complexes of Gd(III) as magnetic resonance imaging contrast agents. J Alloys Compounds 249:163–172

    Article  CAS  Google Scholar 

  • Laurent S, Elst LV, Copoix F, Muller RN (2001) Stability of MRI paramagnetic contrast media, a proton relaxometric protocol for transmetallation assessment. Invest Radiol 36:115–122

    Article  CAS  PubMed  Google Scholar 

  • Laurent S, Elst LV, Copoix F, Muller RN (2006) Comparative study of the physicochemical properties of six clinical low molecular weight gadolinium contrast agents. Contrast Media Mol Imaging 1:128–137

    Article  CAS  PubMed  Google Scholar 

  • Morcos SK (2007) Nephrogenic systemic fibrosis following the administration of extracellular gadolinium based contrast agents: is the stability of the contrast agent molecule an important factor in the pathogenesis of this condition? Br J Radiol 80:73–76

    Article  CAS  PubMed  Google Scholar 

  • Morcos SK (2011) Experimental studies investigating the pathophysiology of nephrogenic systemic fibrosis; what did we learn so far? Eur Radiol 21:496–500

    Article  PubMed  Google Scholar 

  • Morcos SK, Thomsen HS, Webb JAW (2002) Members of the contrast media safety committee of the european society of urogenital radiology (ESUR) Dialysis and contrast media. Eur Radiol 12:3026–3030

    Google Scholar 

  • Perazella MA (2007) Nephrogenic systemic fibrosis, kidney disease and gadolinium: is there a link? Clin J Am Soc Nephrol 2:200–2002

    Article  CAS  PubMed  Google Scholar 

  • Pietsch H, Lengsfeld P, Jost G et al (2009) Long-term retention of gadolinium in the skin of rodents following the administration of gadolinium-based contrast agents. Eur Radiol 19:1417–1424

    Article  PubMed  Google Scholar 

  • Port M, Idée JM, Medina C et al (2008) Efficiency, thermodynamic and kinetic stability of marketed gadolinium chelates and their possible clinical consequences: a critical review. Biometals 21:469–490

    Article  CAS  PubMed  Google Scholar 

  • Puttagunta NR, Gibby WA, Smith GT (1996) Human in vivo comparative study of zinc and copper transmetallation after administration of magnetic resonance imaging contrast agents. Invest Radiol 12:739–742

    Article  Google Scholar 

  • Rofsky NM, Sherry AD, Lenkinski RE (2008) Nephrogenic systemic fibrosis: a chemical perspective. Radiology 247:608–612

    Article  PubMed  Google Scholar 

  • Sieber MA, Lengsfeld P, Frenzel T et al (2008) Preclinical investigation to compare different gadolinium-based agents regarding their propensity to release gadolinium in vivo and to trigger nephrogenic systemic fibrosis-like lesions. Eur Radiol 18:2164–2173

    Article  PubMed  Google Scholar 

  • Thomsen HS, Morcos SK, Dawson P (2006) Is there a causal relation between the administration gadolinium based contrast media and the development of nephrogenic systemic fibrosis (NSF)? Clin Radiol 61:905–906

    Article  CAS  PubMed  Google Scholar 

  • Tweedle MF (1992) Physicochemical properties of gadoteridol and other magnetic resonance contrast agents. Invest Radiol 27:S2–S6

    Article  PubMed  Google Scholar 

  • Tweedle MF (2007) Stability of gadolinium chelates (letter to the Editor). Br J Radiol 80:583–584

    Article  CAS  PubMed  Google Scholar 

  • Tweedle MF, Gaughan GT, Hagan J et al (1988) Considerations involving paramagnetic coordination compounds as useful NMR contrast agents. Nucl Med Biol, Int J Radiat Appl Instrum. Part B 15:31–36

    CAS  Google Scholar 

  • Tweedle MF, Wedeking P, Kumar K (1995) Biodistribution of radiolabeled formulated gadopentetate, gadoteridol, gadoterate and gadodiamide in mice and rats. Invest Radiol 30:372–380

    Article  CAS  PubMed  Google Scholar 

  • Wedeking P, Kumar K, Tweedle MF (1992) Dissociation of gadolinium chelates in mice: relationship to chemical characteristics. Magn Reson Imaging 10:641–648

    Article  CAS  PubMed  Google Scholar 

  • White GW, Gibby WA, Tweedle MF (2006) Comparison of Gd (DTPA-BMA) (Omniscan) versus Gd(HP-DO3A) (ProHance) relative to gadolinium retention in human bone tissue by inductively coupled plasma mass spectroscopy. Invest Radiol 41:272–278

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sameh K. Morcos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Morcos, S.K. (2014). Gadolinium Chelates and Stability. In: Thomsen, H., Webb, J. (eds) Contrast Media. Medical Radiology(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/174_2013_895

Download citation

  • DOI: https://doi.org/10.1007/174_2013_895

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36723-6

  • Online ISBN: 978-3-642-36724-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics