Skip to main content

Part of the book series: Medical Radiology ((Med Radiol Diagn Imaging))

Abstract

Bone research in osteoporosis has quite rightly focused on the mineralised component of bone as this is the component that is ultimately responsible for bone strength. However, the non-mineralised component of bone, i.e. the bone marrow, is many times more metabolically active and responsive than the mineralised component of bone. Despite this, the bone marrow has been relatively overlooked with regard to the pathogenesis of osteoporosis and related conditions. This has changed with magnetic resonance imaging and positron emission tomography allowing non-invasive quantification of bone marrow physiology and pathology on a large scale. Aspects of the bone marrow that can be evaluated on imaging are marrow fat content, perfusion, molecular diffusion and metabolic activity. There are many ways in which bone marrow metabolism may potentially influence bone metabolism. For example, the bone marrow forms the microenvironment of biologically relevant endosteal and trabecular bone and this bone may be responding to changes in the bone marrow. Similarly, the bone marrow contains pluripotent mesenchymal stem cells with the ability to differentiate preferentially along either haematopoetic, adipocytic or osteoblastic cell lines. Preliminary research has shown how bone loss in senile osteoporosis mass is accompanied by scalar changes in marrow fat content, marrow perfusion and marrow diffusion. Similar to the bone loss of osteoporosis, the bone marrow changes in osteoporosis represent an exaggeration of physiological age-related change. Bone marrow changes occur in synchrony rather than pre- or post-date changes in the mineralised component of bone. Whether the bone marrow is an active contributor or a passive bystander to physiological and osteoporotic bone loss remains to be seen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arnett TR (2010) Acidosis, hypoxia and bone. Arch Biochem Biophys 1(503):103–119

    Google Scholar 

  • Balliu E, Vilanova JC, Peláez I, Puig J, Remollo S, Barceló C, Barceló J, Pedraza S (2009) Diagnostic value of apparent diffusion coefficients to differentiate benign from malignant vertebral bone marrow lesions. Eur J Radiol 69:560–566

    PubMed  CAS  Google Scholar 

  • Basu S, Houseni M, Bural G, Chamroonat W, Udupa J, Mishra S, Alavi A (2007) Magnetic resonance imaging based bone marrow segmentation for quantitative calculation of pure red marrow metabolism using 2-deoxy-2-[F-18] fluoro-d-glucose-positron emission tomography: a novel application with significant implications for combined structure-function approach. Mol Imaging Biol 9:361–365

    PubMed  Google Scholar 

  • Baur A, Stabler A, Bartl R, Lamerz R, Scheidler J, Reiser M (1997) MRI gadolinium enhancement of bone marrow: age-related changes in normals and in diffuse neoplastic infiltration. Skeletal Radiol 26:414–418

    PubMed  CAS  Google Scholar 

  • Bernard C, Liney G, Manton D, Turnbull L, Langton C (2008) Comparison of fat quantification methods: a phantom study at 3.0 T. J Magn Reson Imaging 27:192–197

    PubMed  Google Scholar 

  • Biffar A, Baur-Melnyk A, Schmidt GP, Reiser MF, Dietrich O (2010) Multiparameter MRI assessment of normal-appearing and diseased vertebral bone marrow. Eur Radiol 20:2679–2689

    PubMed  Google Scholar 

  • Blake GM, Griffith JF, Yeung DK, Leung PC, Fogelman I (2009) Effect of increasing vertebral marrow fat content on BMD measurement, T-score status and fracture risk prediction by DXA. Bone 44:495–501

    PubMed  CAS  Google Scholar 

  • Bloomfield SA, Hogan HA, Delp MD (2002) Decreases in bone blood flow and bone material properties in aging Fischer-344 rats. Clin Orthop 396:248–257

    PubMed  Google Scholar 

  • Blouin K, Boivin A, Tchernof A (2008) Androgens and body fat distribution. J Steroid Biochem Mol Biol 108:272–280

    PubMed  CAS  Google Scholar 

  • Bolotin HH (1998) Analytic and quantitative exposition of patient-specific systematic inaccuracies inherent in planar DXA-derived in vivo BMD measurements. Med Phys 25:139–151

    PubMed  CAS  Google Scholar 

  • Bolotin HH (2007) DXA in vivo BMD methodology: an erroneous and misleading research and clinical gauge of bone mineral status, bone fragility and bone remodelling. Bone 41:138–154

    PubMed  CAS  Google Scholar 

  • Bolotin HH, Sievansen H, Grashuis JL, Kuiper JW, Jarvinen TL (2001) Inaccuracies inherent in patient-specific dual-energy x-ray absorptiometry bone mineral density measurements: comprehensive phantom-based evaluation. J Bone Miner Res 16:417–426

    PubMed  CAS  Google Scholar 

  • Bredella MA (2010) Perspective: the bone-fat connection. Skeletal Radiol 39:729–731

    PubMed  Google Scholar 

  • Bredella MA, Torriani M, Ghomi RH, Thomas BJ, Brick DJ, Gerweck AV, Rosen CJ, Klibanski A, Miller KK (2011) Vertebral bone marrow fat is positively associated with visceral fat and inversely associated with IGF-1 in obese women. Obesity (Silver Spring) 19:49–53

    CAS  Google Scholar 

  • Bridgeman G, Brookes M (1996) Blood supply to the human femoral diaphysis in youth and senescence. J Anat 188:611–621

    PubMed  Google Scholar 

  • Brookes M (1974) Approaches to non-invasive blood flow measurement in bone. Biomed Eng 9:342–347

    PubMed  CAS  Google Scholar 

  • Chan JH, Peh WC, Tsui EY, Chau LF, Cheung KK, Chan KB, Yuen MK, Wong ET, Wong KP (2002) Acute vertebral body compression fractures: discrimination between benign and malignant causes using apparent diffusion coefficients. Br J Radiol 75:207–214

    PubMed  CAS  Google Scholar 

  • Chen WT, Shih TT (2006) Correlation between the bone marrow blood perfusion and lipid water content on the lumbar spine in female subjects. J Magn Reson Imaging 24:176–181

    PubMed  Google Scholar 

  • Chen WT, Shih TT, Chen RC, Lo SY, Chou CT, Lee JM, Tu HY (2001) Vertebral bone marrow perfusion evaluated with dynamic contrast-enhanced MR imaging: significance of aging and sex. Radiology 220:213–238

    PubMed  CAS  Google Scholar 

  • Chen WT, Ting-Fang Shih T, Hu CJ, Chen RC, Tu HY (2004) Relationship between vertebral bone marrow blood perfusion and common carotid intima-media thickness in aging adults. J Magn Reson Imaging 20:811–816

    PubMed  Google Scholar 

  • Coetzee M, Haag M, Kruger MC (2007) Effects of arachidonic acid, docosahexaenoic acid, prostaglandin E(2) and parathyroid hormone on osteoprotegerin and RANKL secretion by MC3T3-E1 osteoblast-like cells. J Nutr Biochem 18:54–63

    PubMed  CAS  Google Scholar 

  • Collins TC, Ewing SK, Diem SJ, Taylor BC, Orwoll ES, Cummings SR, Strotmeyer ES, Osteoporotic Fractures in Men (MrOS) Study Group (2009) Peripheral arterial disease is associated with higher rates of hip bone loss and increased fracture risk in older men. Circulation 119:2305–2312

    PubMed  Google Scholar 

  • Cowin SC (2002) Mechanosensation and fluid transport in living bone. J Musculoskelet Neuronal Interact 2:256–260

    PubMed  CAS  Google Scholar 

  • Crepaldi G, Romanato G, Tonin P, Maggi S (2007) Osteoporosis and body composition. J Endocrinol Invest 30:42–47

    PubMed  CAS  Google Scholar 

  • D’Ippolito G, Diabira S, Howard GA, Roos BA, Schiller PC (2006) Low oxygen tension inhibits osteogenic differentiation and enhances stemness of human MIAMI cells. Bone 39:513–522

    PubMed  Google Scholar 

  • De Bisschop E, Luypaert R, Louis O, Osteaux M (1993) Fat fraction of lumbar bone marrow using in vivo proton nuclear magnetic resonance spectroscopy. Bone 14:133–136

    PubMed  Google Scholar 

  • Demer LL, Tintut Y (2009) Mechanisms linking osteoporosis with cardiovascular calcification. Curr Osteoporos Rep 7:42–46

    PubMed  Google Scholar 

  • Dennison E, Eastell R, Fall CH, Kellingray S, Wood PJ, Cooper C (1999) Determinants of bone loss in elderly men and women: a prospective population-based study. Osteoporos Int 10:384–391

    PubMed  CAS  Google Scholar 

  • Duda SH, Laniado M, Schick F, Strayle M, Claussen CD (1995) Normal bone marrow in the sacrum of young adults: differences between the sexes seen on chemical-shift MR imaging. AJR Am J Roentgenol 164:935–940

    PubMed  CAS  Google Scholar 

  • Dunnill MS, Anderson JA, Whitehead R (1967) Quantitative histological studies on age changes in bone. J Pathol Bacteriol 94:275–291

    PubMed  CAS  Google Scholar 

  • Duque G (2008) Bone and fat connection in aging bone. Curr Opin Rheumatol 20:429–434

    PubMed  CAS  Google Scholar 

  • Erly WK, Oh ES, Outwater EK (2006) The utility of in-phase/opposed-phase imaging in differentiating malignancy from acute benign compression fractures of the spine. AJNR Am J Neuroradiol 27:1183–1188

    PubMed  CAS  Google Scholar 

  • Fatokun AA, Stone TW, Smith RA (2006) Hydrogen peroxide-induced oxidative stress in MC3T3-E1 cells: the effects of glutamate and protection by purines. Bone 39:542–551

    PubMed  CAS  Google Scholar 

  • Gameiro CM, Romão F, Castelo-Branco C (2010) Menopause and aging: changes in the immune system—a review. Maturitas 67:316–320

    PubMed  CAS  Google Scholar 

  • Gao J, Zeng S, Sun BL, Fan HM, Han LH (1987) Menstrual blood loss and hematologic indices in healthy Chinese women. J Reprod Med 32:822–826

    PubMed  CAS  Google Scholar 

  • Gerdes CM, Kijowski R, Reeder SB (2007) IDEAL imaging of the musculoskeletal system: robust water fat separation for uniform fat suppression, marrow evaluation, and cartilage imaging. AJR Am J Roentgenol 189:W284–W291

    PubMed  Google Scholar 

  • Gimble JM, Nuttall ME (2004) Bone and fat: old questions, new insights. Endocrine 23:183–188

    PubMed  CAS  Google Scholar 

  • Griffith JF, Genant HK (2011) New imaging modalities in bone. Curr Rheumatol Rep 13:241–250

    PubMed  Google Scholar 

  • Griffith JF, Yeung DK, Antonio GE, Lee FK, Hong AW, Wong SY, Lau EM, Leung PC (2005) Vertebral bone mineral density, marrow perfusion, and fat content in healthy men and men with osteoporosis: dynamic contrast-enhanced MR imaging and MR spectroscopy. Radiology 236:945–951

    PubMed  Google Scholar 

  • Griffith JF, Yeung DK, Antonio GE, Wong SY, Kwok TC, Woo J, Leung PC (2006) Vertebral marrow fat content and diffusion and perfusion indexes in women with varying bone density: MR evaluation. Radiology 241:831–838

    PubMed  Google Scholar 

  • Griffith JF, Yeung DK, Tsang PH, Choi KC, Kwok TC, Ahuja AT, Leung KS, Leung PC (2008) Compromised bone marrow perfusion in osteoporosis. J Bone Miner Res 23:1068–1075

    PubMed  Google Scholar 

  • Griffith JF, Yeung DK, Chow SK, Leung JC, Leung PC (2009) Reproducibility of MR perfusion and (1)H spectroscopy of bone marrow. J Magn Reson Imaging 29:1438–1442

    PubMed  Google Scholar 

  • Griffith JF, Engelke K, Genant HK (2010) Looking beyond bone mineral density: Imaging assessment of bone quality. Ann N Y Acad Sci 1192:45–56

    PubMed  Google Scholar 

  • Griffith JF, Yeung DKW, Ma HT, Leung JSC, Kwok TCY, Leung PC (2012) Bone marrow fat content in the elderly: a reversal of trend seen in younger subjects J Magn Reson Imaging (In press)

    Google Scholar 

  • Hamerman D (2005) Osteoporosis and atherosclerosis: biological linkages and the emergence of dual-purpose therapies. QJM 98:467–484

    PubMed  CAS  Google Scholar 

  • Hannan MT, Felson DT, Dawson-Hughes B, Tucker KL, Cupples LA, Wilson PW, Kiel DP (2000) Risk factors for longitudinal bone loss in elderly men and women: the Framingham Osteoporosis Study. J Bone Miner Res 15:710–720

    PubMed  CAS  Google Scholar 

  • Hartsock RJ, Smith EB, Petty CS (1965) Normal variations with aging of the amount of hematopoetic tissue in bone marrow from the anterior iliac crest. A study made from 177 cases of sudden death examined by necropsy. Am J Clin Pathol 43:326–331

    PubMed  CAS  Google Scholar 

  • Hatipoglu HG, Selvi A, Ciliz D, Yuksel E (2007) Quantitative and diffusion MR imaging as a new method to assess osteoporosis. Am J Neuroradiol 28:1934–1937

    PubMed  CAS  Google Scholar 

  • Herneth AM, Philipp MO, Naude J, Funovics M, Beichel RR, Bammer R, Imhof H (2002) Vertebral metastases: assessment with apparent diffusion coefficient. Radiology 225:889–894

    PubMed  Google Scholar 

  • Hillengass J, Stieltjes B, Bäuerle T, McClanahan F, Heiss C, Hielscher T, Wagner-Gund B, Habetler V, Goldschmidt H, Schlemmer HP, Delorme S, Zechmann CM (2011) Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and diffusion-weighted imaging of bone marrow in healthy individuals. Acta Radiol 1(52):324–330

    Google Scholar 

  • Hwang S, Panicek DM (2007) Magnetic resonance imaging of bone marrow in oncology, Part 1. Skeletal Radiol 36:913–920

    PubMed  Google Scholar 

  • Ishijima H, Ishizaka H, Horikoshi H, Sakurai M (1996) Water fraction of lumbar vertebral bone marrow estimated from chemical shift misregistration on MR imaging: normal variations with age and sex. AJR Am J Roentgenol 167:355–358

    PubMed  CAS  Google Scholar 

  • Jung CM, Kugel H, Schulte O, Heindel W (2000) Proton-MR spectroscopy of the spinal bone marrow. An analysis of physiological signal behavior. Radiologe 40:694–699

    PubMed  CAS  Google Scholar 

  • Kahn D, Weiner GJ, Ben-Haim S, Ponto LL, Madsen MT, Bushnell DL, Watkins GL, Argenyi EA, Hichwa RD (1994) Positron emission tomographic measurement of bone marrow blood flow to the pelvis and lumbar vertebrae in young normal adults. Blood 15(83):958–963

    Google Scholar 

  • Kha HT, Basseri B, Shouhed D, Richardson J, Tetradis S, Hahn TJ, Parhami F (2004) Oxysterols regulate differentiation of mesenchymal stem cells: pro-bone and anti-fat. J Bone Miner Res 19:830–840

    PubMed  CAS  Google Scholar 

  • Khan F, Green FC, Forsyth JS, Greene SA, Morris AD, Belch JJ (2003) Impaired microvascular function in normal children: effects of adiposity and poor glucose handling. J Physiol 551:705–711

    PubMed  CAS  Google Scholar 

  • Khoo MM, Tyler PA, Saifuddin A, Padhani AR (2011) Diffusion-weighted imaging (DWI) in musculoskeletal MRI: a critical review. Skeletal Radiol 40:665–681

    PubMed  Google Scholar 

  • Kugel H, Jung C, Schulte O, Heindel W (2001) Age- and sex-specific differences in the 1H-spectrum of vertebral bone marrow. J Magn Reson Imaging 13:263–268

    PubMed  CAS  Google Scholar 

  • Laroche M, Ludot I, Thiechart M, Arlet J, Pieraggi M, Chiron P, Moulinier L, Cantagrel A, Puget J, Utheza G et al (1995) Study of the intraosseous vessels of the femoral head in patients with fractures of the femoral neck or osteoarthritis of the hip. Osteoporos Int 5:213–217

    PubMed  CAS  Google Scholar 

  • Lau EM, Leung PC, Kwok T, Woo J, Lynn H, Orwoll E, Cummings S, Cauley J (2006) The determinants of bone mineral density in Chinese men—results from Mr. Os (Hong Kong), the first cohort study on osteoporosis in Asian men. Osteoporos Int 17:297–303

    PubMed  CAS  Google Scholar 

  • Lecka-Czernik B, Moerman EJ, Grant DF, Lehmann JM, Manolagas SC, Jilka RL (2002) Divergent effects of selective peroxisome proliferator-activated receptor-gamma 2 ligands on adipocyte versus osteoblast differentiation. Endocrinology 143:2376–2384

    PubMed  CAS  Google Scholar 

  • Lehnert A, Machann J, Helms G, Claussen CD, Schick F (2004) Diffusion characteristics of large molecules assessed by proton MRS on a whole-body MR system. Magn Reson Imaging 22:39–46

    PubMed  CAS  Google Scholar 

  • Letechipia JE, Alessi A, Rodriguez G, Asbun J (2010) Would increased interstitial fluid flow through in situ mechanical stimulation enhance bone remodeling? Med Hypotheses 75:196–198

    PubMed  CAS  Google Scholar 

  • Lichtman MA (1981) The ultrastructure of the hemopoietic environment of the marrow: a review. Exp Hematol 9:391–410

    PubMed  CAS  Google Scholar 

  • Liney GP, Bernard CP, Manton DJ, Turnbull LW, Langton CM (2007) Age, gender, and skeletal variation in bone marrow composition: a preliminary study at 3.0 Tesla. J Magn Reson Imaging 26:787–793

    PubMed  Google Scholar 

  • Link TM (2012) Osteoporosis imaging: state of the art and advanced imaging. Radiology 263:3–17

    PubMed  Google Scholar 

  • Liu Y, Tang GY, Tang RB, Peng YF, Li W (2010) Assessment of bone marrow changes in postmenopausal women with varying bone densities: magnetic resonance spectroscopy and diffusion magnetic resonance imaging. Chin Med J (Engl) 123:1524–1527

    Google Scholar 

  • Maeda M, Sakuma H, Maier SE, Takeda K (2003) Quantitative assessment of diffusion abnormalities in benign and malignant vertebral compression fractures by line scan diffusion-weighted imaging. AJR Am J Roentgenol 181:1203–1209

    PubMed  Google Scholar 

  • Manolagas SC, Almeida M (2007) Gone with the Wnts: beta-catenin, T-cell factor, forkhead box O, and oxidative stress in age-dependent diseases of bone, lipid, and glucose metabolism. Mol Endocrinol 21:2605–2614

    PubMed  CAS  Google Scholar 

  • Marcovitz PA, Tran HH, Franklin BA, O’Neill WW, Yerkey M, Boura J, Kleerekoper M, Dickinson CZ (2005) Usefulness of bone mineral density to predict significant coronary artery disease. Am J Cardiol 96:1059–1063

    PubMed  Google Scholar 

  • McCarthy ID (2005) Fluid shifts due to microgravity and their effects on bone: a review of current knowledge. Ann Biomed Eng 33:95–103

    PubMed  Google Scholar 

  • McCarthy EF (2011) Perspective: skeletal complications of space flight. Skeletal Radiol 40:661–663

    PubMed  Google Scholar 

  • Mills R (1973) Self-diffusion in normal and heavy water in the range 1–45 deg. J Phy Chem 77:685–688

    CAS  Google Scholar 

  • Montazel JL, Divine M, Lepage E, Kobeiter H, Breil S, Rahmouni A (2003) Normal spinal bone marrow in adults: dynamic gadolinium-enhanced MR imaging. Radiology 229:703–709

    PubMed  Google Scholar 

  • Müller R, Van Campenhout H, Van Damme B, Van Der Perre G, Dequeker J, Hildebrand T, Rüegsegger P (1998) Morphometric analysis of human bone biopsies: a quantitative structural comparison of histological sections and micro-computed tomography. Bone 23:59–66

    PubMed  Google Scholar 

  • Nonomura Y, Yasumoto M, Yoshimura R, Haraguchi K, Ito S, Akashi T, Ohashi I (2001) Relationship between bone marrow cellularity and apparent diffusion coefficient. J Magn Reson Imaging 13:757–760

    PubMed  CAS  Google Scholar 

  • Nordström A, Eriksson M, Stegmayr B, Gustafson Y, Nordström P (2010) Low bone mineral density is an independent risk factor for stroke and death. Cerebrovasc Dis. 29:130–136

    PubMed  Google Scholar 

  • Parfitt AM (2002) Misconceptions (2): turnover is always higher in cancellous than in cortical bone. Bone 30:807–809

    PubMed  CAS  Google Scholar 

  • Pfitzner J (1976) Poiseuille and his law. Anaesthesia 31:273–275

    PubMed  CAS  Google Scholar 

  • Piert M, Machulla HJ, Jahn M, Stahlschmidt A, Becker GA, Zittel TT (2002) Coupling of porcine bone blood flow and metabolism in high-turnover bone disease measured by [(15)O]H(2)O and [(18)F]fluoride ion positron emission tomography. Eur J Nucl Med Mol Imaging 29:907–914

    PubMed  CAS  Google Scholar 

  • Poulsen RC, Wolber FM, Moughan PJ, Kruger MC (2008) Long chain polyunsaturated fatty acids alter membrane-bound RANK-L expression and osteoprotegerin secretion by MC3T3-E1 osteoblast-like cells. Prostaglandins Other Lipid Mediat 85:42–48

    PubMed  CAS  Google Scholar 

  • Poulton TB, Murphy WD, Duerk JL, Chapek CC, Feiglin DH (1993) Bone marrow reconversion in adults who are smokers: MR Imaging findings. Am J Roentgenol 161:1217–1221

    CAS  Google Scholar 

  • Prisby RD, Ramsey MW, Behnke BJ, Dominguez JM 2nd, Donato AJ, Allen MR, Delp MD (2007) Aging reduces skeletal blood flow, endothelium-dependent vasodilation, and NO bioavailability in rats. J Bone Miner Res 22:1280–1288

    PubMed  CAS  Google Scholar 

  • Ratcliffe JF (1986) Arterial changes in the human vertebral body associated with aging. The ratios of peripheral to central arteries and arterial coiling. Spine 11:235–240

    PubMed  CAS  Google Scholar 

  • Rosen CJ, Klibanski A (2009) Bone, fat, and body composition: evolving concepts in the pathogenesis of osteoporosis. Am J Med 122:409–414

    PubMed  CAS  Google Scholar 

  • Samuels A, Perry MJ, Gibson RL, Colley S, Tobias JH (2001) Role of endothelial nitric oxide synthase in estrogen-induced osteogenesis. Bone 29:24–29

    PubMed  CAS  Google Scholar 

  • Sanada M, Taguchi A, Higashi Y, Tsuda M, Kodama I, Yoshizumi M, Ohama K (2004) Forearm endothelial function and bone mineral loss in postmenopausal women. Atherosclerosis 176:387–392

    PubMed  CAS  Google Scholar 

  • Savvopoulou V, Maris TG, Vlahos L, Moulopoulos LA (2008) Differences in perfusion parameters between upper and lower lumbar vertebral segments with dynamic contrast-enhanced MRI (DCE MRI). Eur Radiol 18:1876–1883

    PubMed  Google Scholar 

  • Schellinger D, Lin SC, Fertikh D et al (2000) Normal lumbar vertebrae: anatomic, age, and sex variance in subjects at proton MR spectroscopy-initial experience. Radiology 215:910–916

    PubMed  CAS  Google Scholar 

  • Shen W, Chen J, Punyanitya M, Shapses S, Heshka S, Heymsfield SB (2007) MRI-measured bone marrow adipose tissue is inversely related to DXA-measured bone mineral in Caucasian women. Osteoporos Int 18:641–647

    PubMed  CAS  Google Scholar 

  • Shih TT, Chang CJ, Hsu CY, Wei SY, Su KC, Chung HW (2004) Correlation of bone marrow lipid water content with bone mineral density on the lumbar spine. Spine (Phila Pa 1976) 15(29):2844–2850

    Google Scholar 

  • Shouhed D, Kha HT, Richardson JA, Amantea CM, Hahn TJ, Parhami F (2005) Osteogenic oxysterols inhibit the adverse effects of oxidative stress on osteogenic differentiation of marrow stromal cells. J Cell Biochem 95:1276–1283

    PubMed  CAS  Google Scholar 

  • Sorenson JA (1990) Effects of nonmineral tissues on measurement of bone mineral content by dual-photon absorptiometry. Med Phys 17:905–912

    PubMed  CAS  Google Scholar 

  • Steiner RM, Mitchell DG, Rao VM, Schweitzer ME (1993) Magnetic resonance imaging of diffuse bone marrow disease. Radiol Clin North Am 31:383–409

    PubMed  CAS  Google Scholar 

  • Sumino H, Ichikawa S, Kasama S, Takahashi T, Sakamoto H, Kumakura H, Takayama Y, Kanda T, Murakami M, Kurabayashi M (2007) Relationship between brachial arterial endothelial function and lumbar spine bone mineral density in postmenopausal women. Circ J 71:1555–1559

    PubMed  CAS  Google Scholar 

  • Tang G, Liu Y, Li W, Yao J, Li B, Li P (2007) Optimization of b value in diffusion-weighted MRI for the differential diagnosis of benign and malignant vertebral fractures. Skeletal Radiol 36:1035–1041

    PubMed  Google Scholar 

  • Tang GY, Lv ZW, Tang RB, Liu Y, Peng YF, Li W, Cheng YS (2010) Evaluation of MR spectroscopy and diffusion-weighted MRI in detecting bone marrow changes in postmenopausal women with osteoporosis. Clin Radiol 65:377–381

    PubMed  CAS  Google Scholar 

  • Thawait SK, Marcus MA, Morrison WB, Klufas RA, Eng J, Carrino J (2011) Research synthesis: what is the diagnostic performance of MRI to discriminate benign from malignant vertebral compression fractures? Systematic review and meta-analysis. Spine (Phila Pa 1976) [Epub ahead of print]

    Google Scholar 

  • Toth MJ, Tchernof A, Sites CK, Poehlman ET (2000) Menopause-related changes in body fat distribution. Ann N Y Acad Sci 904:502–506

    PubMed  CAS  Google Scholar 

  • Travlos GS (2006) Normal structure, function, and histology of the bone marrow. Toxicol Pathol 34:548–565

    PubMed  Google Scholar 

  • Van Dyke D, Parker H, Anger HO, McRae J, Dobson EL, Yano Y, Naets JP, Linfoot J (1971) Markedly increased bone blood flow in myelofibrosis. J Nucl Med 12:506–512

    PubMed  Google Scholar 

  • Wang YX, Griffith JF (2010) Effect of menopause on lumbar disk degeneration: potential etiology. Radiology 257:318–320

    PubMed  Google Scholar 

  • Wang YX, Griffith JF, Kwok AW, Leung JC, Yeung DK, Ahuja AT, Leung PC (2009) Reduced bone perfusion in proximal femur of subjects with decreased bone mineral density preferentially affects the femoral neck. Bone 45:711–715

    PubMed  Google Scholar 

  • Ward R, Caruthers S, Yablon C, Blake M, DiMasi M, Eustace S (2000) Analysis of diffusion changes in posttraumatic bone marrow using navigator-corrected diffusion gradients. Am J Roentgenol 174:731–734

    CAS  Google Scholar 

  • Wehrli FW, Hopkins JA, Hwang SN, Song HK, Snyder PJ, Haddad JG (2000) Cross-sectional study of osteopenia with quantitative MR imaging and bone densitometry. Radiology 217:527–538

    PubMed  CAS  Google Scholar 

  • Wimalawansa SJ (2010) Nitric oxide and bone. Ann N Y Acad Sci 1192:391–403

    PubMed  CAS  Google Scholar 

  • Yeung DK, Wong SY, Griffith JF, Lau EM (2004) Bone marrow diffusion in osteoporosis: evaluation with quantitative MR diffusion imaging. J Magn Reson Imaging 19:222

    PubMed  Google Scholar 

  • Yeung DK, Griffith JF, Antonio GE, Lee FK, Woo J, Leung PC (2005) Osteoporosis is associated with increased marrow fat content and decreased marrow fat unsaturation: a proton MR spectroscopy study. J Magn Reson Imaging 22:279–285

    PubMed  Google Scholar 

  • Yeung DK, Lam SL, Griffith JF, Chan AB, Chen Z, Tsang PH, Leung PC (2008) Analysis of bone marrow fatty acid composition using high-resolution proton NMR spectroscopy. Chem Phys Lipids 151:103–109

    PubMed  CAS  Google Scholar 

  • Zampa V, Cosottini M, Michelassi C, Ortori S, Bruschini L, Bartolozzi C (2002) Value of opposed-phase gradient-echo technique in distinguishing between benign and malignant vertebral lesions. Eur Radiol 12:1811–1818

    PubMed  Google Scholar 

  • Zhou XJ, Leeds NE, McKinnon GC, Kumar AJ (2002) Characterization of benign and metastatic vertebral compression fractures with quantitative diffusion MR imaging. Am J Neuroradiol 23:165–170

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James F. Griffith .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Griffith, J.F. (2013). Bone Marrow Changes in Osteoporosis. In: Guglielmi, G. (eds) Osteoporosis and Bone Densitometry Measurements. Medical Radiology(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/174_2012_614

Download citation

  • DOI: https://doi.org/10.1007/174_2012_614

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27883-9

  • Online ISBN: 978-3-642-27884-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics