Skip to main content

Diabetic Kidney Disease: From Pathogenesis to Novel Treatment Possibilities

  • Chapter
  • First Online:
From Obesity to Diabetes

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 274))

Abstract

One of the microvascular complications of diabetes is diabetic kidney disease (DKD), often leading to end stage renal disease (ESRD) in which patients require costly dialysis or transplantation. The silent onset and irreversible progression of DKD are characterized by a steady decline of the estimated glomerular filtration rate, with or without concomitant albuminuria. The diabetic milieu allows the complex pathophysiology of DKD to enter a vicious cycle by inducing the synthesis of excessive amounts of reactive oxygen species (ROS) causing oxidative stress, inflammation, and fibrosis. As no cure is available, intensive research is required to develop novel treatments possibilities. This chapter provides an overview of the important pathomechanisms identified in diabetic kidney disease, the currently established therapies, as well as recently developed novel therapeutic strategies in DKD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adelusi TI et al (2020) Keap1/Nrf2/ARE signaling unfolds therapeutic targets for redox imbalanced-mediated diseases and diabetic nephropathy. Biomed Pharmacother 123:109732

    Article  CAS  PubMed  Google Scholar 

  • ADVANCE Collaborative Group, Patel A et al (2008) Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med 358(24):2560–2572

    Article  Google Scholar 

  • Altenhofer S et al (2015) Evolution of NADPH oxidase inhibitors: selectivity and mechanisms for target engagement. Antioxid Redox Signal 23(5):406–427

    Article  PubMed  PubMed Central  Google Scholar 

  • American Diabetes Association (2000) Implications of the United Kingdom prospective diabetes study. Diabetes Care 23(Suppl 1):S27–S31

    Google Scholar 

  • American Diabetes Association (2021) Standards of medical care in diabetes - 2021, p 44

    Google Scholar 

  • An X et al (2018) The receptor for advanced glycation endproducts mediates podocyte heparanase expression through NF-kappaB signaling pathway. Mol Cell Endocrinol 470:14–25

    Article  CAS  PubMed  Google Scholar 

  • Asaba K et al (2005) Effects of NADPH oxidase inhibitor in diabetic nephropathy. Kidney Int 67(5):1890–1898

    Article  CAS  PubMed  Google Scholar 

  • Babaei-Jadidi R et al (2003) Prevention of incipient diabetic nephropathy by high-dose thiamine and benfotiamine. Diabetes 52(8):2110–2120

    Article  CAS  PubMed  Google Scholar 

  • Badve SV et al (2020) Effects of allopurinol on the progression of chronic kidney disease. N Engl J Med 382(26):2504–2513

    Article  CAS  PubMed  Google Scholar 

  • Bakris GL et al (2020) Effect of finerenone on chronic kidney disease outcomes in type 2 diabetes. N Engl J Med 383(23):2219–2229

    Article  CAS  PubMed  Google Scholar 

  • Bedard K, Krause KH (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87(1):245–313

    Article  CAS  PubMed  Google Scholar 

  • Beddhu S et al (2016) A randomized controlled trial of the effects of febuxostat therapy on adipokines and markers of kidney fibrosis in asymptomatic hyperuricemic patients with diabetic nephropathy. Can J Kidney Health Dis 3:2054358116675343

    Article  PubMed  PubMed Central  Google Scholar 

  • Berthier CC et al (2009) Enhanced expression of Janus kinase-signal transducer and activator of transcription pathway members in human diabetic nephropathy. Diabetes 58(2):469–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bethel MA et al (2018) Renal outcomes in the EXenatide study of cardiovascular event lowering (EXSCEL). Diabetes 67(Supplement 1):522

    Article  Google Scholar 

  • Bhatt DL et al (2021) Sotagliflozin in patients with diabetes and recent worsening heart failure. N Engl J Med 384(2):117–128

    Article  CAS  PubMed  Google Scholar 

  • Block K, Gorin Y, Abboud HE (2009) Subcellular localization of Nox4 and regulation in diabetes. Proc Natl Acad Sci U S A 106(34):14385–14390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boban M et al (2014) Circulating purine compounds, uric acid, and xanthine oxidase/dehydrogenase relationship in essential hypertension and end stage renal disease. Ren Fail 36(4):613–618

    Article  CAS  PubMed  Google Scholar 

  • Boels MGS et al (2017) Systemic monocyte chemotactic protein-1 inhibition modifies renal macrophages and restores glomerular endothelial glycocalyx and barrier function in diabetic nephropathy. Am J Pathol 187(11):2430–2440

    Article  CAS  PubMed  Google Scholar 

  • Bolignano D et al (2017) Antioxidant agents for delaying diabetic kidney disease progression: a systematic review and meta-analysis. PLoS One 12(6):e0178699

    Article  PubMed  PubMed Central  Google Scholar 

  • Bortolotti M et al (2021) Xanthine oxidoreductase: one enzyme for multiple physiological tasks. Redox Biol 41:101882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brand MD (2010) The sites and topology of mitochondrial superoxide production. Exp Gerontol 45(7–8):466–472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brenner BM et al (2001) Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med 345(12):861–869

    Article  CAS  PubMed  Google Scholar 

  • Brosius FC, Tuttle KR, Kretzler M (2016) JAK inhibition in the treatment of diabetic kidney disease. Diabetologia 59(8):1624–1627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Broz P, Dixit VM (2016) Inflammasomes: mechanism of assembly, regulation and signalling. Nat Rev Immunol 16(7):407–420

    Article  CAS  PubMed  Google Scholar 

  • Cannon CP et al (2020) Cardiovascular outcomes with ertugliflozin in type 2 diabetes. N Engl J Med 383(15):1425–1435

    Article  CAS  PubMed  Google Scholar 

  • Cassis P et al (2019) A preclinical overview of emerging therapeutic targets for glomerular diseases. Expert Opin Ther Targets 23(7):593–606

    Article  CAS  PubMed  Google Scholar 

  • Cha JJ et al (2017) APX-115, a first-in-class pan-NADPH oxidase (Nox) inhibitor, protects db/db mice from renal injury. Lab Investig 97(4):419–431

    Article  CAS  PubMed  Google Scholar 

  • Chen K et al (2008) Regulation of ROS signal transduction by NADPH oxidase 4 localization. J Cell Biol 181(7):1129–1139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chow FY et al (2005) Intercellular adhesion molecule-1 deficiency is protective against nephropathy in type 2 diabetic db/db mice. J Am Soc Nephrol 16(6):1711–1722

    Article  CAS  PubMed  Google Scholar 

  • Chow FY et al (2006) Monocyte chemoattractant protein-1 promotes the development of diabetic renal injury in streptozotocin-treated mice. Kidney Int 69(1):73–80

    Article  CAS  PubMed  Google Scholar 

  • Chuang PY et al (2007) Advanced glycation endproducts induce podocyte apoptosis by activation of the FOXO4 transcription factor. Kidney Int 72(8):965–976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colhoun HM et al (2004) Primary prevention of cardiovascular disease with atorvastatin in type 2 diabetes in the collaborative atorvastatin diabetes study (CARDS): multicentre randomised placebo-controlled trial. Lancet 364(9435):685–696

    Article  CAS  PubMed  Google Scholar 

  • Coll RC et al (2019) MCC950 directly targets the NLRP3 ATP-hydrolysis motif for inflammasome inhibition. Nat Chem Biol 15(6):556–559

    Article  CAS  PubMed  Google Scholar 

  • Coughlan MT, Sharma K (2016) Challenging the dogma of mitochondrial reactive oxygen species overproduction in diabetic kidney disease. Kidney Int 90(2):272–279

    Article  CAS  PubMed  Google Scholar 

  • Coughlan MT et al (2016) Mapping time-course mitochondrial adaptations in the kidney in experimental diabetes. Clin Sci (Lond) 130(9):711–720

    Article  CAS  Google Scholar 

  • Dagogo-Jack S (2021) Screening, monitoring, prevention, and treatment strategies for chronic kidney disease in patients with type 2 diabetes. In: Chronic kidney disease and type 2 diabetes. American Diabetes Association, Arlington (VA), pp 23–27

    Google Scholar 

  • Darisipudi MN et al (2011) Dual blockade of the homeostatic chemokine CXCL12 and the proinflammatory chemokine CCL2 has additive protective effects on diabetic kidney disease. Am J Pathol 179(1):116–124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davila-Esqueda ME, Martinez-Morales F (2004) Pentoxifylline diminishes the oxidative damage to renal tissue induced by streptozotocin in the rat. Exp Diabesity Res 5(4):245–251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davis TM et al (2011) Effects of fenofibrate on renal function in patients with type 2 diabetes mellitus: the fenofibrate intervention and event lowering in diabetes (FIELD) study. Diabetologia 54(2):280–290

    Article  CAS  PubMed  Google Scholar 

  • DCCT/EDIC Research Group, de Boer IH et al (2011) Intensive diabetes therapy and glomerular filtration rate in type 1 diabetes. N Engl J Med 365(25):2366–2376

    Article  Google Scholar 

  • de Zeeuw D et al (2004) Proteinuria, a target for renoprotection in patients with type 2 diabetic nephropathy: lessons from RENAAL. Kidney Int 65(6):2309–2320

    Article  PubMed  Google Scholar 

  • de Zeeuw D et al (2013) Bardoxolone methyl in type 2 diabetes and stage 4 chronic kidney disease. N Engl J Med 369(26):2492–2503

    Article  PubMed  PubMed Central  Google Scholar 

  • Degenhardt TP et al (2002) Pyridoxamine inhibits early renal disease and dyslipidemia in the streptozotocin-diabetic rat. Kidney Int 61(3):939–950

    Article  CAS  PubMed  Google Scholar 

  • Diabetes Control and Complications Trial Research Group, Nathan DM et al (1993) The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med 329(14):977–986

    Article  Google Scholar 

  • Donate-Correa J et al (2020) Inflammatory cytokines in diabetic kidney disease: pathophysiologic and therapeutic implications. Front Med (Lausanne) 7:628289

    Article  Google Scholar 

  • Doria A et al (2020) Serum urate lowering with allopurinol and kidney function in type 1 diabetes. N Engl J Med 382(26):2493–2503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dugan LL et al (2013) AMPK dysregulation promotes diabetes-related reduction of superoxide and mitochondrial function. J Clin Invest 123(11):4888–4899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dwyer JP et al (2015) Pyridoxamine dihydrochloride in diabetic nephropathy (PIONEER-CSG-17): lessons learned from a pilot study. Nephron 129(1):22–28

    Article  CAS  PubMed  Google Scholar 

  • Eli Lilly and Company (2018) Researching cardiovascular events with a weekly incretin in diabetes (REWIND). https://www.clinicaltrials.gov/ct2/show/NCT01394952. Accessed 16 Sep 2021

  • Everett BM et al (2018) Anti-inflammatory therapy with canakinumab for the prevention and management of diabetes. J Am Coll Cardiol 71(21):2392–2401

    Article  CAS  PubMed  Google Scholar 

  • Figarola JL et al (2008) LR-90 prevents dyslipidaemia and diabetic nephropathy in the Zucker diabetic fatty rat. Diabetologia 51(5):882–891

    Article  CAS  PubMed  Google Scholar 

  • Filippatos TD et al (2019) SGLT2 inhibitors and cardioprotection: a matter of debate and multiple hypotheses. Postgrad Med 131(2):82–88

    Article  PubMed  Google Scholar 

  • Fioretto P et al (1998) Reversal of lesions of diabetic nephropathy after pancreas transplantation. N Engl J Med 339(2):69–75

    Article  CAS  PubMed  Google Scholar 

  • Frias JP et al (2021) Tirzepatide versus semaglutide once weekly in patients with type 2 diabetes. N Engl J Med 385(6):503–515

    Article  CAS  PubMed  Google Scholar 

  • Fulton DJ (2009) Nox5 and the regulation of cellular function. Antioxid Redox Signal 11(10):2443–2452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galvan DL, Green NH, Danesh FR (2017a) The hallmarks of mitochondrial dysfunction in chronic kidney disease. Kidney Int 92(5):1051–1057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galvan DL et al (2017b) Real-time in vivo mitochondrial redox assessment confirms enhanced mitochondrial reactive oxygen species in diabetic nephropathy. Kidney Int 92(5):1282–1287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garibotto G et al (2017) Toll-like receptor-4 signaling mediates inflammation and tissue injury in diabetic nephropathy. J Nephrol 30(6):719–727

    Article  CAS  PubMed  Google Scholar 

  • Geiszt M et al (2000) Identification of renox, an NAD(P)H oxidase in kidney. Proc Natl Acad Sci U S A 97(14):8010–8014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gerstein HC et al (2019) Dulaglutide and renal outcomes in type 2 diabetes: an exploratory analysis of the REWIND randomised, placebo-controlled trial. Lancet 394(10193):131–138

    Article  CAS  PubMed  Google Scholar 

  • Gerstein HC et al (2021) Cardiovascular and renal outcomes with efpeglenatide in type 2 diabetes. N Engl J Med 385(10):896–907

    Article  CAS  PubMed  Google Scholar 

  • Goicoechea M et al (2010) Effect of allopurinol in chronic kidney disease progression and cardiovascular risk. Clin J Am Soc Nephrol 5(8):1388–1393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gorin Y et al (2005) Nox4 NAD(P)H oxidase mediates hypertrophy and fibronectin expression in the diabetic kidney. J Biol Chem 280(47):39616–39626

    Article  CAS  PubMed  Google Scholar 

  • Gorin Y et al (2015) Targeting NADPH oxidase with a novel dual Nox1/Nox4 inhibitor attenuates renal pathology in type 1 diabetes. Am J Physiol Renal Physiol 308(11):F1276–F1287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gray SP et al (2017) Combined NOX1/4 inhibition with GKT137831 in mice provides dose-dependent Reno- and atheroprotection even in established micro- and macrovascular disease. Diabetologia 60(5):927–937

    Article  CAS  PubMed  Google Scholar 

  • Groop PH et al (2009) The presence and severity of chronic kidney disease predicts all-cause mortality in type 1 diabetes. Diabetes 58(7):1651–1658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gueguen C et al (2020) Empagliflozin modulates renal sympathetic and heart rate baroreflexes in a rabbit model of diabetes. Diabetologia 63(7):1424–1434

    Article  CAS  PubMed  Google Scholar 

  • Han Y et al (2018) Reactive oxygen species promote tubular injury in diabetic nephropathy: the role of the mitochondrial ros-txnip-nlrp3 biological axis. Redox Biol 16:32–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He H et al (2018) Oridonin is a covalent NLRP3 inhibitor with strong anti-inflammasome activity. Nat Commun 9(1):2550

    Article  PubMed  PubMed Central  Google Scholar 

  • Heerspink HJL, Kohan DE, de Zeeuw D (2021) New insights from SONAR indicate adding sodium glucose co-transporter 2 inhibitors to an endothelin receptor antagonist mitigates fluid retention and enhances albuminuria reduction. Kidney Int 99(2):346–349

    Article  CAS  PubMed  Google Scholar 

  • Heumuller S et al (2008) Apocynin is not an inhibitor of vascular NADPH oxidases but an antioxidant. Hypertension 51(2):211–217

    Article  PubMed  Google Scholar 

  • Holman RR et al (2008) 10-year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med 359(15):1577–1589

    Article  CAS  PubMed  Google Scholar 

  • Holman RR et al (2017) Effects of once-weekly exenatide on cardiovascular outcomes in type 2 diabetes. N Engl J Med 377(13):1228–1239

    Article  CAS  PubMed  Google Scholar 

  • Holterman CE et al (2014) Nephropathy and elevated BP in mice with podocyte-specific NADPH oxidase 5 expression. J Am Soc Nephrol 25(4):784–797

    Article  CAS  PubMed  Google Scholar 

  • Hong Q et al (2018) Increased podocyte Sirtuin-1 function attenuates diabetic kidney injury. Kidney Int 93(6):1330–1343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hou Y et al (2016) Mitochondria-targeted peptide SS-31 attenuates renal injury via an antioxidant effect in diabetic nephropathy. Am J Physiol Renal Physiol 310(6):F547–F559

    Article  CAS  PubMed  Google Scholar 

  • Hou B et al (2017) Salvianolic acid a protects against diabetic nephropathy through ameliorating glomerular endothelial dysfunction via inhibiting AGE-RAGE signaling. Cell Physiol Biochem 44(6):2378–2394

    Article  CAS  PubMed  Google Scholar 

  • Hovind P et al (2009) Serum uric acid as a predictor for development of diabetic nephropathy in type 1 diabetes: an inception cohort study. Diabetes 58(7):1668–1671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang Y et al (2018) Tranilast directly targets NLRP3 to treat inflammasome-driven diseases. EMBO Mol Med 10(4):e8689

    Article  PubMed  PubMed Central  Google Scholar 

  • Hutton HL et al (2016) The NLRP3 inflammasome in kidney disease and autoimmunity. Nephrology (Carlton) 21(9):736–744

    Article  CAS  Google Scholar 

  • Jensen LJ et al (2006) Renal effects of a neutralising RAGE-antibody in long-term streptozotocin-diabetic mice. J Endocrinol 188(3):493–501

    Article  CAS  PubMed  Google Scholar 

  • Jha JC et al (2014) Genetic targeting or pharmacologic inhibition of NADPH oxidase nox4 provides renoprotection in long-term diabetic nephropathy. J Am Soc Nephrol 25(6):1237–1254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jha JC et al (2016a) Diabetes and kidney disease: role of oxidative stress. Antioxid Redox Signal 25(12):657–684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jha JC et al (2016b) Podocyte-specific Nox4 deletion affords renoprotection in a mouse model of diabetic nephropathy. Diabetologia 59(2):379–389

    Article  CAS  PubMed  Google Scholar 

  • Jha JC et al (2017) NADPH oxidase Nox5 accelerates renal injury in diabetic nephropathy. Diabetes 66(10):2691–2703

    Article  CAS  PubMed  Google Scholar 

  • Jha JC et al (2018) A causal link between oxidative stress and inflammation in cardiovascular and renal complications of diabetes. Clin Sci (Lond) 132(16):1811–1836

    Article  CAS  Google Scholar 

  • Jiang T et al (2010) The protective role of Nrf2 in streptozotocin-induced diabetic nephropathy. Diabetes 59(4):850–860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jourde-Chiche N et al (2019) Endothelium structure and function in kidney health and disease. Nat Rev Nephrol 15(2):87–108

    Article  PubMed  Google Scholar 

  • Kanwar YS et al (2008) Diabetic nephropathy: mechanisms of renal disease progression. Exp Biol Med (Maywood) 233(1):4–11

    Article  CAS  Google Scholar 

  • Kidney Disease: Improving Global Outcomes Diabetes Work Group (2020) KDIGO 2020 clinical practice guideline for diabetes management in chronic kidney disease. Kidney Int 98(4S):S1–S115

    Google Scholar 

  • Kimura K et al (2018) Febuxostat therapy for patients with stage 3 CKD and asymptomatic hyperuricemia: a randomized trial. Am J Kidney Dis 72(6):798–810

    Article  CAS  PubMed  Google Scholar 

  • Komers R et al (2016) Effects of xanthine oxidase inhibition with febuxostat on the development of nephropathy in experimental type 2 diabetes. Br J Pharmacol 173(17):2573–2588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kosugi T et al (2009) Effect of lowering uric acid on renal disease in the type 2 diabetic db/db mice. Am J Physiol Renal Physiol 297(2):F481–F488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kovac S et al (2015) Nrf2 regulates ROS production by mitochondria and NADPH oxidase. Biochim Biophys Acta 1850(4):794–801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krishnan SM et al (2019) Pharmacological inhibition of the NLRP3 inflammasome reduces blood pressure, renal damage, and dysfunction in salt-sensitive hypertension. Cardiovasc Res 115(4):776–787

    Article  CAS  PubMed  Google Scholar 

  • Kwon G et al (2017) A novel pan-Nox inhibitor, APX-115, protects kidney injury in streptozotocin-induced diabetic mice: possible role of peroxisomal and mitochondrial biogenesis. Oncotarget 8(43):74217–74232

    Article  PubMed  PubMed Central  Google Scholar 

  • Lamkanfi M, Dixit VM (2014) Mechanisms and functions of inflammasomes. Cell 157(5):1013–1022

    Article  CAS  PubMed  Google Scholar 

  • Lassen E, Daehn IS (2020) Molecular mechanisms in early diabetic kidney disease: glomerular endothelial cell dysfunction. Int J Mol Sci 21(24):9456

    Article  CAS  PubMed Central  Google Scholar 

  • Lee HJ et al (2014) Febuxostat ameliorates diabetic renal injury in a streptozotocin-induced diabetic rat model. Am J Nephrol 40(1):56–63

    Article  CAS  PubMed  Google Scholar 

  • Lee ES et al (2020) APX-115, a pan-NADPH oxidase inhibitor, protects development of diabetic nephropathy in podocyte specific NOX5 transgenic mice. Free Radic Biol Med 161:92–101

    Article  CAS  PubMed  Google Scholar 

  • Lewis EJ et al (1993) The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. The collaborative study group. N Engl J Med 329(20):1456–1462

    Article  CAS  PubMed  Google Scholar 

  • Lewis EJ et al (2001) Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. N Engl J Med 345(12):851–860

    Article  CAS  PubMed  Google Scholar 

  • Li J et al (2018) Oridonin protects against the inflammatory response in diabetic nephropathy by inhibiting the TLR4/p38-MAPK and TLR4/NF-kappaB signaling pathways. Int Immunopharmacol 55:9–19

    Article  CAS  PubMed  Google Scholar 

  • Lim AK, Tesch GH (2012) Inflammation in diabetic nephropathy. Mediat Inflamm 2012:146154

    Article  Google Scholar 

  • Lin JS, Susztak K (2016) Podocytes: the weakest link in diabetic kidney disease? Curr Diab Rep 16(5):45

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin SL et al (2002) Pentoxifylline attenuated the renal disease progression in rats with remnant kidney. J Am Soc Nephrol 13(12):2916–2929

    Article  CAS  PubMed  Google Scholar 

  • Lin SL et al (2008) Effect of pentoxifylline in addition to losartan on proteinuria and GFR in CKD: a 12-month randomized trial. Am J Kidney Dis 52(3):464–474

    Article  CAS  PubMed  Google Scholar 

  • Lin M et al (2012) Toll-like receptor 4 promotes tubular inflammation in diabetic nephropathy. J Am Soc Nephrol 23(1):86–102

    Article  CAS  PubMed  Google Scholar 

  • Loeffler I, Wolf G (2015) Epithelial-to-mesenchymal transition in diabetic nephropathy: fact or fiction? Cell 4(4):631–652

    Article  Google Scholar 

  • Lonn E et al (2002) Effects of vitamin E on cardiovascular and microvascular outcomes in high-risk patients with diabetes: results of the HOPE study and MICRO-HOPE substudy. Diabetes Care 25(11):1919–1927

    Article  CAS  PubMed  Google Scholar 

  • Macisaac RJ, Jerums G (2011) Diabetic kidney disease with and without albuminuria. Curr Opin Nephrol Hypertens 20(3):246–257

    Article  CAS  PubMed  Google Scholar 

  • Mann JF et al (2008) Renal outcomes with telmisartan, ramipril, or both, in people at high vascular risk (the ONTARGET study): a multicentre, randomised, double-blind, controlled trial. Lancet 372(9638):547–553

    Article  CAS  PubMed  Google Scholar 

  • Mann JF et al (2010) Avosentan for overt diabetic nephropathy. J Am Soc Nephrol 21(3):527–535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marshall CB (2016) Rethinking glomerular basement membrane thickening in diabetic nephropathy: adaptive or pathogenic? Am J Physiol Renal Physiol 311(5):F831–F843

    Article  CAS  PubMed  Google Scholar 

  • Marso SP et al (2016a) Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med 375(4):311–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marso SP et al (2016b) Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med 375(19):1834–1844

    Article  CAS  PubMed  Google Scholar 

  • Martyn KD et al (2006) Functional analysis of Nox4 reveals unique characteristics compared to other NADPH oxidases. Cell Signal 18(1):69–82

    Article  CAS  PubMed  Google Scholar 

  • Mason RM, Wahab NA (2003) Extracellular matrix metabolism in diabetic nephropathy. J Am Soc Nephrol 14(5):1358–1373

    Article  CAS  PubMed  Google Scholar 

  • Matsui T et al (2017) RAGE-aptamer blocks the development and progression of experimental diabetic nephropathy. Diabetes 66(6):1683–1695

    Article  CAS  PubMed  Google Scholar 

  • McCullough PA et al (2007) Independent components of chronic kidney disease as a cardiovascular risk state: results from the kidney early evaluation program (KEEP). Arch Intern Med 167(11):1122–1129

    Article  CAS  PubMed  Google Scholar 

  • McGuire DK et al (2021) Association of SGLT2 inhibitors with cardiovascular and kidney outcomes in patients with type 2 diabetes: a meta-analysis. JAMA Cardiol 6(2):148–158

    Article  PubMed  Google Scholar 

  • McMurray JJV et al (2021) Effect of dapagliflozin on clinical outcomes in patients with chronic kidney disease, with and without cardiovascular disease. Circulation 143(5):438–448

    Article  CAS  PubMed  Google Scholar 

  • Menini S et al (2020) The inflammasome in chronic complications of diabetes and related metabolic disorders. Cell 9(8)

    Google Scholar 

  • Menne J et al (2017) C-C motif-ligand 2 inhibition with emapticap pegol (NOX-E36) in type 2 diabetic patients with albuminuria. Nephrol Dial Transplant 32(2):307–315

    CAS  PubMed  Google Scholar 

  • Mills KT et al (2016) Sodium excretion and the risk of cardiovascular disease in patients with chronic kidney disease. JAMA 315(20):2200–2210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mise K, Galvan DL, Danesh FR (2020) Shaping up mitochondria in diabetic nephropathy. Kidney360 1(9):982–992

    Article  PubMed  PubMed Central  Google Scholar 

  • Mundel P, Shankland SJ (2002) Podocyte biology and response to injury. J Am Soc Nephrol 13(12):3005–3015

    Article  PubMed  Google Scholar 

  • Murphy MP (2009) How mitochondria produce reactive oxygen species. Biochem J 417(1):1–13

    Article  CAS  PubMed  Google Scholar 

  • Murray DP et al (2018) Is dietary protein intake predictive of 1-year mortality in dialysis patients? Am J Med Sci 356(3):234–243

    Article  PubMed  Google Scholar 

  • Nakamura S et al (1997) Progression of nephropathy in spontaneous diabetic rats is prevented by OPB-9195, a novel inhibitor of advanced glycation. Diabetes 46(5):895–899

    Article  CAS  PubMed  Google Scholar 

  • Nangaku M et al (2020) Randomized clinical trial on the effect of bardoxolone methyl on GFR in diabetic kidney disease patients (TSUBAKI study). Kidney Int Rep 5(6):879–890

    Article  PubMed  PubMed Central  Google Scholar 

  • Navarro JF et al (1999) Urinary protein excretion and serum tumor necrosis factor in diabetic patients with advanced renal failure: effects of pentoxifylline administration. Am J Kidney Dis 33(3):458–463

    Article  CAS  PubMed  Google Scholar 

  • Navarro JF et al (2003) Effects of pentoxifylline administration on urinary N-acetyl-beta-glucosaminidase excretion in type 2 diabetic patients: a short-term, prospective, randomized study. Am J Kidney Dis 42(2):264–270

    Article  CAS  PubMed  Google Scholar 

  • Navarro JF et al (2005) Additive antiproteinuric effect of pentoxifylline in patients with type 2 diabetes under angiotensin II receptor blockade: a short-term, randomized, controlled trial. J Am Soc Nephrol 16(7):2119–2126

    Article  CAS  PubMed  Google Scholar 

  • Navarro-Gonzalez JF, Mora-Fernandez C (2008) The role of inflammatory cytokines in diabetic nephropathy. J Am Soc Nephrol 19(3):433–442

    Article  CAS  PubMed  Google Scholar 

  • Navarro-Gonzalez JF et al (2015) Effect of pentoxifylline on renal function and urinary albumin excretion in patients with diabetic kidney disease: the PREDIAN trial. J Am Soc Nephrol 26(1):220–229

    Article  CAS  PubMed  Google Scholar 

  • Neal B, Perkovic V, Matthews DR (2017) Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med 377(21):2099

    PubMed  Google Scholar 

  • Ninichuk V et al (2008) Late onset of Ccl2 blockade with the Spiegelmer mNOX-E36-3'PEG prevents glomerulosclerosis and improves glomerular filtration rate in db/db mice. Am J Pathol 172(3):628–637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nolfi-Donegan D, Braganza A, Shiva S (2020) Mitochondrial electron transport chain: oxidative phosphorylation, oxidant production, and methods of measurement. Redox Biol 37:101674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Novo Nordisk A/S (2021) A research study to see how semaglutide works compared to placebo in people with type 2 diabetes and chronic kidney disease (FLOW). https://clinicaltrials.gov/ct2/show/NCT03819153. Accessed 1 Sept 2021

  • Ostergaard JA et al (2022) Adverse renal effects of NLRP3 inflammasome inhibition by MCC950 in an interventional model of diabetic kidney disease. Clin Sci (in press)

    Google Scholar 

  • Ostergaard JA, Cooper ME, Jandeleit-Dahm KAM (2020) Targeting oxidative stress and anti-oxidant defence in diabetic kidney disease. J Nephrol 33(5):917–929

    Article  PubMed  Google Scholar 

  • Pacher P, Nivorozhkin A, Szabo C (2006) Therapeutic effects of xanthine oxidase inhibitors: renaissance half a century after the discovery of allopurinol. Pharmacol Rev 58(1):87–114

    Article  CAS  PubMed  Google Scholar 

  • Parving HH et al (2001) The effect of irbesartan on the development of diabetic nephropathy in patients with type 2 diabetes. N Engl J Med 345(12):870–878

    Article  CAS  PubMed  Google Scholar 

  • Parving HH et al (2012) Cardiorenal end points in a trial of aliskiren for type 2 diabetes. N Engl J Med 367(23):2204–2213

    Article  CAS  PubMed  Google Scholar 

  • Penno G et al (2021) Insulin resistance, diabetic kidney disease, and all-cause mortality in individuals with type 2 diabetes: a prospective cohort study. BMC Med 19(1):66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pergola PE et al (2011a) Effect of bardoxolone methyl on kidney function in patients with T2D and stage 3b-4 CKD. Am J Nephrol 33(5):469–476

    Article  CAS  PubMed  Google Scholar 

  • Pergola PE et al (2011b) Bardoxolone methyl and kidney function in CKD with type 2 diabetes. N Engl J Med 365(4):327–336

    Article  CAS  PubMed  Google Scholar 

  • Perkovic V et al (2019) Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N Engl J Med 380(24):2295–2306

    Article  CAS  PubMed  Google Scholar 

  • Petrilli V et al (2007) Activation of the NALP3 inflammasome is triggered by low intracellular potassium concentration. Cell Death Differ 14(9):1583–1589

    Article  CAS  PubMed  Google Scholar 

  • Pickering RJ et al (2019) Transactivation of RAGE mediates angiotensin-induced inflammation and atherogenesis. J Clin Invest 129(1):406–421

    Article  PubMed  Google Scholar 

  • Pisano A et al (2017) Xanthine oxidase inhibitors for improving renal function in chronic kidney disease patients: an updated systematic review and meta-analysis. Int J Mol Sci 18(11):2283

    Article  PubMed Central  Google Scholar 

  • Plantinga LC et al (2010) Prevalence of chronic kidney disease in US adults with undiagnosed diabetes or prediabetes. Clin J Am Soc Nephrol 5(4):673–682

    Article  PubMed  PubMed Central  Google Scholar 

  • Qian Y et al (2008) From fibrosis to sclerosis: mechanisms of glomerulosclerosis in diabetic nephropathy. Diabetes 57(6):1439–1445

    Article  CAS  PubMed  Google Scholar 

  • Qin J et al (2019) AKF-PD alleviates diabetic nephropathy via blocking the RAGE/AGEs/NOX and PKC/NOX pathways. Sci Rep 9(1):4407

    Article  PubMed  PubMed Central  Google Scholar 

  • Rajaram RD et al (2019) Tubular NOX4 expression decreases in chronic kidney disease but does not modify fibrosis evolution. Redox Biol 26:101234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ram C et al (2020) Targeting NLRP3 inflammasome as a promising approach for treatment of diabetic nephropathy: preclinical evidences with therapeutic approaches. Eur J Pharmacol 885:173503

    Article  CAS  PubMed  Google Scholar 

  • Reddy MA, Zhang E, Natarajan R (2015) Epigenetic mechanisms in diabetic complications and metabolic memory. Diabetologia 58(3):443–455

    Article  CAS  PubMed  Google Scholar 

  • Reidy K et al (2014) Molecular mechanisms of diabetic kidney disease. J Clin Invest 124(6):2333–2340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reutens AT et al (2020) A physician-initiated double-blind, randomised, placebo-controlled, phase 2 study evaluating the efficacy and safety of inhibition of NADPH oxidase with the first-in-class Nox-1/4 inhibitor, GKT137831, in adults with type 1 diabetes and persistently elevated urinary albumin excretion: protocol and statistical considerations. Contemp Clin Trials 90:105892

    Article  PubMed  Google Scholar 

  • Ridker PM et al (2017) Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med 377(12):1119–1131

    Article  CAS  PubMed  Google Scholar 

  • Ridker PM et al (2018) Inhibition of interleukin-1beta by canakinumab and cardiovascular outcomes in patients with chronic kidney disease. J Am Coll Cardiol 71(21):2405–2414

    Article  CAS  PubMed  Google Scholar 

  • Rosenstock J et al (2021) Efficacy and safety of a novel dual GIP and GLP-1 receptor agonist tirzepatide in patients with type 2 diabetes (SURPASS-1): a double-blind, randomised, phase 3 trial. Lancet 398(10295):143–155

    Article  CAS  PubMed  Google Scholar 

  • Samra YA et al (2016) Cepharanthine and piperine ameliorate diabetic nephropathy in rats: role of NF-kappaB and NLRP3 inflammasome. Life Sci 157:187–199

    Article  CAS  PubMed  Google Scholar 

  • Sanajou D et al (2018) AGE-RAGE axis blockade in diabetic nephropathy: current status and future directions. Eur J Pharmacol 833:158–164

    Article  CAS  PubMed  Google Scholar 

  • Schiffer TA, Friedrich-Persson M (2017) Mitochondrial reactive oxygen species and kidney hypoxia in the development of diabetic nephropathy. Front Physiol 8:211

    Article  PubMed  PubMed Central  Google Scholar 

  • Schmit D, Fliser D, Speer T (2019) Proprotein convertase subtilisin/kexin type 9 in kidney disease. Nephrol Dial Transplant 34(8):1266–1271

    Article  CAS  PubMed  Google Scholar 

  • Schnell O et al (2020) Report from the 5th cardiovascular outcome trial (CVOT) summit. Cardiovasc Diabetol 19(1):47

    Article  PubMed  PubMed Central  Google Scholar 

  • Sedeek M et al (2010) Critical role of Nox4-based NADPH oxidase in glucose-induced oxidative stress in the kidney: implications in type 2 diabetic nephropathy. Am J Physiol Renal Physiol 299(6):F1348–F1358

    Article  CAS  PubMed  Google Scholar 

  • Sedeek M et al (2013) Renoprotective effects of a novel Nox1/4 inhibitor in a mouse model of type 2 diabetes. Clin Sci (Lond) 124(3):191–202

    Article  CAS  Google Scholar 

  • Serrander L et al (2007) NOX5 is expressed at the plasma membrane and generates superoxide in response to protein kinase C activation. Biochimie 89(9):1159–1167

    Article  CAS  PubMed  Google Scholar 

  • Sharma A et al (2021) Specific NLRP3 inhibition protects against diabetes-associated atherosclerosis. Diabetes 70(3):772–787

    Article  CAS  PubMed  Google Scholar 

  • Shen X et al (2016) Efficacy of statins in patients with diabetic nephropathy: a meta-analysis of randomized controlled trials. Lipids Health Dis 15(1):179

    Article  PubMed  PubMed Central  Google Scholar 

  • Sircar D et al (2015) Efficacy of febuxostat for slowing the GFR decline in patients with CKD and asymptomatic hyperuricemia: a 6-month, double-blind, randomized, placebo-controlled trial. Am J Kidney Dis 66(6):945–950

    Article  CAS  PubMed  Google Scholar 

  • Siu YP et al (2006) Use of allopurinol in slowing the progression of renal disease through its ability to lower serum uric acid level. Am J Kidney Dis 47(1):51–59

    Article  CAS  PubMed  Google Scholar 

  • Sleight P (2000) The HOPE study (heart outcomes prevention evaluation). J Renin-Angiotensin-Aldosterone Syst 1(1):18–20

    Article  CAS  PubMed  Google Scholar 

  • Solini A et al (2013) The purinergic 2X7 receptor participates in renal inflammation and injury induced by high-fat diet: possible role of NLRP3 inflammasome activation. J Pathol 231(3):342–353

    Article  CAS  PubMed  Google Scholar 

  • Soma J et al (2006) Effect of tranilast in early-stage diabetic nephropathy. Nephrol Dial Transplant 21(10):2795–2799

    Article  CAS  PubMed  Google Scholar 

  • Sourris KC et al (2012) Ubiquinone (coenzyme Q10) prevents renal mitochondrial dysfunction in an experimental model of type 2 diabetes. Free Radic Biol Med 52(3):716–723

    Article  CAS  PubMed  Google Scholar 

  • Steffes MW et al (1992) Cell and matrix components of the glomerular mesangium in type I diabetes. Diabetes 41(6):679–684

    Article  CAS  PubMed  Google Scholar 

  • Steno Diabetes Center Copenhagen (2019) Renal effects of treatment with empagliflozin alone or in combination with semaglutide in patients with type 2 diabetes and albuminuria (EmpaSema). https://clinicaltrials.gov/ct2/show/NCT04061200. Accessed 01 Sep 2021

  • Stratton IM et al (2000) Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study. BMJ 321(7258):405–412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strutz F et al (2000) Effects of pentoxifylline, pentifylline and gamma-interferon on proliferation, differentiation, and matrix synthesis of human renal fibroblasts. Nephrol Dial Transplant 15(10):1535–1546

    Article  CAS  PubMed  Google Scholar 

  • Takac I et al (2011) The E-loop is involved in hydrogen peroxide formation by the NADPH oxidase Nox4. J Biol Chem 286(15):13304–13313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tashiro K et al (2002) Urinary levels of monocyte chemoattractant protein-1 (MCP-1) and interleukin-8 (IL-8), and renal injuries in patients with type 2 diabetic nephropathy. J Clin Lab Anal 16(1):1–4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thallas-Bonke V et al (2008) Inhibition of NADPH oxidase prevents advanced glycation end product-mediated damage in diabetic nephropathy through a protein kinase C-alpha-dependent pathway. Diabetes 57(2):460–469

    Article  CAS  PubMed  Google Scholar 

  • Thallas-Bonke V et al (2021) Targeted deletion of nicotinamide adenine dinucleotide phosphate oxidase 4 from proximal tubules is dispensable for diabetic kidney disease development. Nephrol Dial Transplant 36(6):988–997

    Article  CAS  PubMed  Google Scholar 

  • The ACE Inhibitors in Diabetic Nephropathy Trialist Group (2001) Should all patients with type 1 diabetes mellitus and microalbuminuria receive angiotensin-converting enzyme inhibitors? A meta-analysis of individual patient data. Ann Intern Med 134(5):370–379

    Article  Google Scholar 

  • The Diabetes Control and Complications (DCCT) Research Group (1995) Effect of intensive therapy on the development and progression of diabetic nephropathy in the Diabetes Control and Complications Trial. Kidney Int 47(6):1703–1720

    Article  Google Scholar 

  • The Writing Team for the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Research Group, Steffes M et al (2003) Sustained effect of intensive treatment of type 1 diabetes mellitus on development and progression of diabetic nephropathy: the Epidemiology of Diabetes Interventions and Complications (EDIC) study. JAMA 290(16):2159–2167

    Article  PubMed Central  Google Scholar 

  • Tsalamandris C et al (1994) Progressive decline in renal function in diabetic patients with and without albuminuria. Diabetes 43(5):649–655

    Article  CAS  PubMed  Google Scholar 

  • Tung CW et al (2018) Glomerular mesangial cell and podocyte injuries in diabetic nephropathy. Nephrology (Carlton) 23(Suppl 4):32–37

    Article  CAS  Google Scholar 

  • Tuttle KR et al (2018a) Dulaglutide versus insulin glargine in patients with type 2 diabetes and moderate-to-severe chronic kidney disease (AWARD-7): a multicentre, open-label, randomised trial. Lancet Diabetes Endocrinol 6(8):605–617

    Article  CAS  PubMed  Google Scholar 

  • Tuttle KR et al (2018b) JAK1/JAK2 inhibition by baricitinib in diabetic kidney disease: results from a phase 2 randomized controlled clinical trial. Nephrol Dial Transplant 33(11):1950–1959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • UK Prospective Diabetes Study (UKPDS) Group (1998) Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 352(9131):837–853

    Article  Google Scholar 

  • Urner S et al (2020) NADPH oxidase inhibition: preclinical and clinical studies in diabetic complications. Antioxid Redox Signal 33(6):415–434

    Article  CAS  PubMed  Google Scholar 

  • van den Hoven MJ et al (2009) Regulation of glomerular heparanase expression by aldosterone, angiotensin II and reactive oxygen species. Nephrol Dial Transplant 24(9):2637–2645

    Article  PubMed  Google Scholar 

  • Viberti G, Wheeldon NM, MicroAlbuminuria Reduction With VALsartan (MARVAL) Study Investigators (2002) Microalbuminuria reduction with valsartan in patients with type 2 diabetes mellitus: a blood pressure-independent effect. Circulation 106(6):672–678

    Article  CAS  PubMed  Google Scholar 

  • Vilaysane A et al (2010) The NLRP3 inflammasome promotes renal inflammation and contributes to CKD. J Am Soc Nephrol 21(10):1732–1744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wanner C et al (2016) Empagliflozin and progression of kidney disease in type 2 diabetes. N Engl J Med 375(4):323–334

    Article  CAS  PubMed  Google Scholar 

  • Ward MS et al (2017) Targeted mitochondrial therapy using MitoQ shows equivalent renoprotection to angiotensin converting enzyme inhibition but no combined synergy in diabetes. Sci Rep 7(1):15190

    Article  PubMed  PubMed Central  Google Scholar 

  • Watson AM et al (2012) Alagebrium reduces glomerular fibrogenesis and inflammation beyond preventing RAGE activation in diabetic apolipoprotein E knockout mice. Diabetes 61(8):2105–2113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilkinson-Berka JL et al (2002) ALT-946 and aminoguanidine, inhibitors of advanced glycation, improve severe nephropathy in the diabetic transgenic (mREN-2)27 rat. Diabetes 51(11):3283–3289

    Article  CAS  PubMed  Google Scholar 

  • Wiviott SD et al (2018) The design and rationale for the dapagliflozin effect on cardiovascular events (DECLARE)-TIMI 58 trial. Am Heart J 200:83–89

    Article  CAS  PubMed  Google Scholar 

  • Xiao YD et al (2016) Thioredoxin-interacting protein mediates NLRP3 inflammasome activation involved in the susceptibility to ischemic acute kidney injury in diabetes. Oxidative Med Cell Longev 2016:2386068

    Article  Google Scholar 

  • Xin R et al (2018) Apocynin inhibited NLRP3/XIAP signalling to alleviate renal fibrotic injury in rat diabetic nephropathy. Biomed Pharmacother 106:1325–1331

    Article  CAS  PubMed  Google Scholar 

  • Xu Y et al (2009) Multiple-modulation effects of oridonin on the production of proinflammatory cytokines and neurotrophic factors in LPS-activated microglia. Int Immunopharmacol 9(3):360–365

    Article  CAS  PubMed  Google Scholar 

  • Yang SM et al (2014) Thrombomodulin domain 1 ameliorates diabetic nephropathy in mice via anti-NF-kappaB/NLRP3 inflammasome-mediated inflammation, enhancement of NRF2 antioxidant activity and inhibition of apoptosis. Diabetologia 57(2):424–434

    Article  CAS  PubMed  Google Scholar 

  • You YH et al (2013) Role of Nox2 in diabetic kidney disease. Am J Physiol Renal Physiol 304(7):F840–F848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • You YH et al (2016) Metabolomics reveals a key role for fumarate in mediating the effects of NADPH oxidase 4 in diabetic kidney disease. J Am Soc Nephrol 27(2):466–481

    Article  CAS  PubMed  Google Scholar 

  • Zhang H et al (2017) Podocyte-specific JAK2 overexpression worsens diabetic kidney disease in mice. Kidney Int 92(4):909–921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X et al (2019a) Effects of coenzyme Q10 intervention on diabetic kidney disease: a systematic review and meta-analysis. Medicine (Baltimore) 98(24):e15850

    Article  Google Scholar 

  • Zhang C et al (2019b) A small molecule inhibitor MCC950 ameliorates kidney injury in diabetic nephropathy by inhibiting NLRP3 inflammasome activation. Diabetes Metab Syndr Obes 12:1297–1309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng H et al (2011) Therapeutic potential of Nrf2 activators in streptozotocin-induced diabetic nephropathy. Diabetes 60(11):3055–3066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zoppini G et al (2012) Serum uric acid levels and incident chronic kidney disease in patients with type 2 diabetes and preserved kidney function. Diabetes Care 35(1):99–104

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karin Jandeleit-Dahm .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aboolian, A., Urner, S., Roden, M., Jha, J.C., Jandeleit-Dahm, K. (2022). Diabetic Kidney Disease: From Pathogenesis to Novel Treatment Possibilities. In: Eckel, J., Clément, K. (eds) From Obesity to Diabetes. Handbook of Experimental Pharmacology, vol 274. Springer, Cham. https://doi.org/10.1007/164_2021_576

Download citation

Publish with us

Policies and ethics