Skip to main content

Chemokines and Bone

  • Chapter
  • First Online:
Bone Regulators and Osteoporosis Therapy

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 262))

Abstract

Chemokines are a family of small proteins, subdivided by their conserved cysteine residues and common structural features. Chemokines interact with their cognate G-protein-coupled receptors to elicit downstream signals that result in cell migration, proliferation, and survival. This review presents evidence for how the various CXC and CC subfamily chemokines influence bone hemostasis by acting on osteoclasts, osteoblasts, and progenitor cells. Also discussed are the ways in which chemokines contribute to bone loss as a result of inflammatory diseases such as rheumatoid arthritis, HIV infection, and periodontal infection. Both positive and negative effects of chemokines on bone formation and bone loss are presented. In addition, the role of chemokines in altering the bone microenvironment through effects on angiogenesis and tumor invasion is discussed. Very few therapeutic agents that influence bone formation by targeting chemokines or chemokine receptors are available, although a few are currently being evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen SJ, Crown SE, Handel TM (2007) Chemokine: receptor structure, interactions, and antagonism. Annu Rev Immunol 25:787–820

    CAS  PubMed  Google Scholar 

  • Alnaeeli M, Penninger JM, Teng YT (2006) Immune interactions with CD4+ T cells promote the development of functional osteoclasts from murine CD11c+ dendritic cells. J Immunol 177(5):3314–3326

    CAS  PubMed  Google Scholar 

  • Anderson DM, Maraskovsky E, Billingsley WL, Dougall WC, Tometsko ME, Roux ER, Teepe MC, DuBose RF, Cosman D, Galibert L (1997) A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature 390(6656):175–179

    CAS  PubMed  Google Scholar 

  • Apel AK, Cheng RKY, Tautermann CS, Brauchle M, Huang CY, Pautsch A, Hennig M, Nar H, Schnapp G (2019) Crystal structure of CC chemokine receptor 2A in complex with an orthosteric antagonist provides insights for the design of selective antagonists. Structure 27(3):427–438.e425

    CAS  PubMed  Google Scholar 

  • Arimont M, Hoffmann C, de Graaf C, Leurs R (2019) Chemokine receptor crystal structures: what can be learnt from them? Mol Pharmacol 96(6):765–777

    CAS  PubMed  Google Scholar 

  • Arron JR, Choi Y (2000) Bone versus immune system. Nature 408(6812):535–536

    CAS  PubMed  Google Scholar 

  • Asano M, Yamaguchi M, Nakajima R, Fujita S, Utsunomiya T, Yamamoto H, Kasai K (2011) IL-8 and MCP-1 induced by excessive orthodontic force mediates odontoclastogenesis in periodontal tissues. Oral Dis 17(5):489–498

    CAS  PubMed  Google Scholar 

  • Bachelerie F, Ben-Baruch A, Burkhardt AM, Combadiere C, Farber JM, Graham GJ, Horuk R, Sparre-Ulrich AH, Locati M, Luster AD, Mantovani A, Matsushima K, Murphy PM, Nibbs R, Nomiyama H, Power CA, Proudfoot AE, Rosenkilde MM, Rot A, Sozzani S, Thelen M, Yoshie O, Zlotnik A (2014) International Union of Basic and Clinical Pharmacology. [corrected]. LXXXIX. Update on the extended family of chemokine receptors and introducing a new nomenclature for atypical chemokine receptors. Pharmacol Rev 66(1):1–79

    PubMed  PubMed Central  Google Scholar 

  • Bazan JF, Bacon KB, Hardiman G, Wang W, Soo K, Rossi D, Greaves DR, Zlotnik A, Schall TJ (1997) A new class of membrane-bound chemokine with a CX3C motif. Nature 385(6617):640–644

    CAS  PubMed  Google Scholar 

  • Berahovich RD, Miao Z, Wang Y, Premack B, Howard MC, Schall TJ (2005) Proteolytic activation of alternative CCR1 ligands in inflammation. J Immunol 174(11):7341–7351

    CAS  PubMed  Google Scholar 

  • Bonewald LF (2007) Osteocytes as dynamic multifunctional cells. Ann N Y Acad Sci 1116:281–290

    CAS  PubMed  Google Scholar 

  • Boyle WJ, Simonet WS, Lacey DL (2003) Osteoclast differentiation and activation. Nature 423(6937):337–342

    CAS  PubMed  Google Scholar 

  • Brancato SK, Albina JE (2011) Wound macrophages as key regulators of repair: origin, phenotype, and function. Am J Pathol 178(1):19–25

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brave M, Farrell A, Ching Lin S, Ocheltree T, Pope Miksinski S, Lee SL, Saber H, Fourie J, Tornoe C, Booth B, Yuan W, He K, Justice R, Pazdur R (2010) FDA review summary: mozobil in combination with granulocyte colony-stimulating factor to mobilize hematopoietic stem cells to the peripheral blood for collection and subsequent autologous transplantation. Oncology 78(3–4):282–288

    CAS  PubMed  Google Scholar 

  • Brylka LJ, Schinke T (2019) Chemokines in physiological and pathological bone remodeling. Front Immunol 10:2182

    CAS  PubMed  PubMed Central  Google Scholar 

  • Burg JS, Ingram JR, Venkatakrishnan AJ, Jude KM, Dukkipati A, Feinberg EN, Angelini A, Waghray D, Dror RO, Ploegh HL, Garcia KC (2015) Structural biology. Structural basis for chemokine recognition and activation of a viral G protein-coupled receptor. Science 347(6226):1113–1117

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cadosch D, Gautschi OP, Chan E, Simmen HP, Filgueira L (2010) Titanium induced production of chemokines CCL17/TARC and CCL22/MDC in human osteoclasts and osteoblasts. J Biomed Mater Res A 92(2):475–483

    PubMed  Google Scholar 

  • Charles JF, Hsu LY, Niemi EC, Weiss A, Aliprantis AO, Nakamura MC (2012) Inflammatory arthritis increases mouse osteoclast precursors with myeloid suppressor function. J Clin Invest 122(12):4592–4605

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen TL (2004) Inhibition of growth and differentiation of osteoprogenitors in mouse bone marrow stromal cell cultures by increased donor age and glucocorticoid treatment. Bone 35(1):83–95

    CAS  PubMed  Google Scholar 

  • Chen W, Foo SS, Taylor A, Lulla A, Merits A, Hueston L, Forwood MR, Walsh NC, Sims NA, Herrero LJ, Mahalingam S (2015) Bindarit, an inhibitor of monocyte chemotactic protein synthesis, protects against bone loss induced by chikungunya virus infection. J Virol 89(1):581–593

    PubMed  Google Scholar 

  • Chinnadurai R, Sands J, Rajan D, Liu X, Arafat D, Das R, Anania FA, Gibson G, Kisseleva T, Galipeau J (2019) Molecular genetic and immune functional responses distinguish bone marrow mesenchymal stromal cells from hepatic stellate cells. Stem Cells 37(8):1075–1082

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chung R, Cool JC, Scherer MA, Foster BK, Xian CJ (2006) Roles of neutrophil-mediated inflammatory response in the bony repair of injured growth plate cartilage in young rats. J Leukoc Biol 80(6):1272–1280

    CAS  PubMed  Google Scholar 

  • Claes L, Recknagel S, Ignatius A (2012) Fracture healing under healthy and inflammatory conditions. Nat Rev Rheumatol 8(3):133–143

    CAS  PubMed  Google Scholar 

  • Coelho LF, de Freitas Almeida GM, Mennechet FJ, Blangy A, Uzé G (2005) Interferon-alpha and -beta differentially regulate osteoclastogenesis: role of differential induction of chemokine CXCL11 expression. Proc Natl Acad Sci U S A 102(33):11917–11922

    PubMed  PubMed Central  Google Scholar 

  • Dang H, Wu W, Wang B, Cui C, Niu J, Chen J, Chen Z, Liu Y (2017) CXCL5 plays a promoting role in osteosarcoma cell migration and invasion in autocrine- and paracrine-dependent manners. Oncol Res 25(2):177–186

    PubMed  Google Scholar 

  • Davanian H, Stranneheim H, BÃ¥ge T, Lagervall M, Jansson L, Lundeberg J, Yucel-Lindberg T (2012) Gene expression profiles in paired gingival biopsies from periodontitis-affected and healthy tissues revealed by massively parallel sequencing. PLoS One 7(9):e46440

    CAS  PubMed  PubMed Central  Google Scholar 

  • Deegan PB, Pavlova E, Tindall J, Stein PE, Bearcroft P, Mehta A, Hughes D, Wraith JE, Cox TM (2011) Osseous manifestations of adult Gaucher disease in the era of enzyme replacement therapy. Medicine 90(1):52–60

    CAS  PubMed  Google Scholar 

  • Deng L, Chen N, Li Y, Zheng H, Lei Q (2010) CXCR6/CXCL16 functions as a regulator in metastasis and progression of cancer. Biochim Biophys Acta 1806(1):42–49

    CAS  PubMed  Google Scholar 

  • Doucet M, Jayaraman S, Swenson E, Tusing B, Weber KL, Kominsky SL (2016) CCL20/CCR6 signaling regulates bone mass accrual in mice. J Bone Miner Res 31(7):1381–1390

    CAS  PubMed  Google Scholar 

  • Ducy P, Schinke T, Karsenty G (2000) The osteoblast: a sophisticated fibroblast under central surveillance. Science 289(5484):1501–1504

    CAS  PubMed  Google Scholar 

  • El Khassawna T, Serra A, Bucher CH, Petersen A, Schlundt C, Könnecke I, Malhan D, Wendler S, Schell H, Volk HD, Schmidt-Bleek K, Duda GN (2017) T lymphocytes influence the mineralization process of bone. Front Immunol 8:562

    PubMed  PubMed Central  Google Scholar 

  • Eraltan H, Cacina C, Kahraman OT, Kurt O, Aydogan HY, Uyar M, Can A, CakmakoÄŸlu B (2012) MCP-1 and CCR2 gene variants and the risk for osteoporosis and osteopenia. Genet Test Mol Biomarkers 16(4):229–233

    CAS  PubMed  Google Scholar 

  • Ertugrul AS, Sahin H, Dikilitas A, Alpaslan N, Bozoglan A (2013) Comparison of CCL28, interleukin-8, interleukin-1β and tumor necrosis factor-alpha in subjects with gingivitis, chronic periodontitis and generalized aggressive periodontitis. J Periodontal Res 48(1):44–51

    CAS  PubMed  Google Scholar 

  • Fatehi F, Mollahosseini M, Hassanshahi G, Khanamani Falahati-Pour S, Khorramdelazad H, Ahmadi Z, Noroozi Karimabad M, Farahmand H (2017) CC chemokines CCL2, CCL3, CCL4 and CCL5 are elevated in osteoporosis patients. J Biomed Res 31(5):468–470

    PubMed  Google Scholar 

  • FDA (2009) FDA advisory committee approves Selzentry. AIDS Patient Care STDs 23(11):987

    Google Scholar 

  • Feldmann M, Brennan FM, Maini RN (1996) Role of cytokines in rheumatoid arthritis. Annu Rev Immunol 14:397–440

    CAS  PubMed  Google Scholar 

  • Fierro FA, Nolta JA, Adamopoulos IE (2017) Concise review: stem cells in osteoimmunology. Stem Cells 35(6):1461–1467

    PubMed  PubMed Central  Google Scholar 

  • Frisch BJ, Ashton JM, Xing L, Becker MW, Jordan CT, Calvi LM (2012) Functional inhibition of osteoblastic cells in an in vivo mouse model of myeloid leukemia. Blood 119(2):540–550

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fukui T, Matsumoto T, Mifune Y, Shoji T, Kuroda T, Kawakami Y, Kawamoto A, Ii M, Kawamata S, Kurosaka M, Asahara T, Kuroda R (2012) Local transplantation of granulocyte colony-stimulating factor-mobilized human peripheral blood mononuclear cells for unhealing bone fractures. Cell Transplant 21(4):707–721

    PubMed  Google Scholar 

  • Gale JD, Gilbert S, Blumenthal S, Elliott T, Pergola PE, Goteti K, Scheele W, Perros-Huguet C (2018) Effect of PF-04634817, an oral CCR2/5 chemokine receptor antagonist, on albuminuria in adults with overt diabetic nephropathy. Kidney Int Rep 3(6):1316–1327

    PubMed  PubMed Central  Google Scholar 

  • Garlet TP, Coelho U, Repeke CE, Silva JS, Cunha Fde Q, Garlet GP (2008) Differential expression of osteoblast and osteoclast chemmoatractants in compression and tension sides during orthodontic movement. Cytokine 42(3):330–335

    CAS  PubMed  Google Scholar 

  • Garlet TP, Fukada SY, Saconato IF, Avila-Campos MJ, da Silva TA, Garlet GP, Cunha Fde Q (2010) CCR2 deficiency results in increased osteolysis in experimental periapical lesions in mice. J Endod 36(2):244–250

    PubMed  Google Scholar 

  • Gilchrist A, Stern P (2015) Chemokines and bone. Clin Rev Bone Miner Metab 13:61–82

    CAS  Google Scholar 

  • Goto Y, Aoyama M, Sekiya T, Kakita H, Waguri-Nagaya Y, Miyazawa K, Asai K, Goto S (2016) CXCR4+ CD45- cells are niche forming for osteoclastogenesis via the SDF-1, CXCL7, and CX3CL1 signaling pathways in bone marrow. Stem Cells 34(11):2733–2743

    CAS  PubMed  Google Scholar 

  • Grassi F, Cristino S, Toneguzzi S, Piacentini A, Facchini A, Lisignoli G (2004) CXCL12 chemokine up-regulates bone resorption and MMP-9 release by human osteoclasts: CXCL12 levels are increased in synovial and bone tissue of rheumatoid arthritis patients. J Cell Physiol 199(2):244–251

    CAS  PubMed  Google Scholar 

  • Greer A, Irie K, Hashim A, Leroux BG, Chang AM, Curtis MA, Darveau RP (2016) Site-specific neutrophil migration and CXCL2 expression in periodontal tissue. J Dent Res 95(8):946–952

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grøgaard B, Gerdin B, ReikerÃ¥s O (1990) The polymorphonuclear leukocyte: has it a role in fracture healing? Arch Orthop Trauma Surg 109(5):268–271

    PubMed  Google Scholar 

  • Ha J, Choi HS, Lee Y, Kwon HJ, Song YW, Kim HH (2010) CXC chemokine ligand 2 induced by receptor activator of NF-kappa B ligand enhances osteoclastogenesis. J Immunol 184(9):4717–4724

    CAS  PubMed  Google Scholar 

  • Ha J, Lee Y, Kim HH (2011) CXCL2 mediates lipopolysaccharide-induced osteoclastogenesis in RANKL-primed precursors. Cytokine 55(1):48–55

    CAS  PubMed  Google Scholar 

  • Haque NS, Tuteja A, Haque N (2019) CC chemokine CCL1 receptor CCR8 mediates conversion of mesenchymal stem cells to embryoid bodies expressing FOXP3+CCR8+ regulatory T cells. PLoS One 14(7):e0218944

    CAS  PubMed  PubMed Central  Google Scholar 

  • Haringman JJ, Smeets TJ, Reinders-Blankert P, Tak PP (2006) Chemokine and chemokine receptor expression in paired peripheral blood mononuclear cells and synovial tissue of patients with rheumatoid arthritis, osteoarthritis, and reactive arthritis. Ann Rheum Dis 65(3):294–300

    CAS  PubMed  Google Scholar 

  • Hauge EM, Qvesel D, Eriksen EF, Mosekilde L, Melsen F (2001) Cancellous bone remodeling occurs in specialized compartments lined by cells expressing osteoblastic markers. J Bone Miner Res 16(9):1575–1582

    CAS  PubMed  Google Scholar 

  • Higashino K, Viggeswarapu M, Bargouti M, Liu H, Titus L, Boden SD (2011) Stromal cell-derived factor-1 potentiates bone morphogenetic protein-2 induced bone formation. Tissue Eng Part A 17(3–4):523–530

    CAS  PubMed  Google Scholar 

  • Hoshino A, Iimura T, Ueha S, Hanada S, Maruoka Y, Mayahara M, Suzuki K, Imai T, Ito M, Manome Y, Yasuhara M, Kirino T, Yamaguchi A, Matsushima K, Yamamoto K (2010) Deficiency of chemokine receptor CCR1 causes osteopenia due to impaired functions of osteoclasts and osteoblasts. J Biol Chem 285(37):28826–28837

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hoshino A, Ueha S, Hanada S, Imai T, Ito M, Yamamoto K, Matsushima K, Yamaguchi A, Iimura T (2013) Roles of chemokine receptor CX3CR1 in maintaining murine bone homeostasis through the regulation of both osteoblasts and osteoclasts. J Cell Sci 126(Pt 4):1032–1045

    CAS  PubMed  Google Scholar 

  • Hoshino-Negishi K, Ohkuro M, Nakatani T, Kuboi Y, Nishimura M, Ida Y, Kakuta J, Hamaguchi A, Kumai M, Kamisako T, Sugiyama F, Ikeda W, Ishii N, Yasuda N, Imai T (2019) Role of anti-fractalkine antibody in suppression of joint destruction by inhibiting migration of osteoclast precursors to the synovium in experimental arthritis. Arthritis Rheumatol 71(2):222–231

    CAS  PubMed  Google Scholar 

  • Hu W, Zhen X, Xiong B, Wang B, Zhang W, Zhou W (2008) CXCR6 is expressed in human prostate cancer in vivo and is involved in the in vitro invasion of PC3 and LNCap cells. Cancer Sci 99(7):1362–1369

    CAS  PubMed  Google Scholar 

  • Imai T, Yasuda N (2016) Therapeutic intervention of inflammatory/immune diseases by inhibition of the fractalkine (CX3CL1)-CX3CR1 pathway. Inflamm Regen 36:9

    PubMed  PubMed Central  Google Scholar 

  • Ishida K, Matsumoto T, Sasaki K, Mifune Y, Tei K, Kubo S, Matsushita T, Takayama K, Akisue T, Tabata Y, Kurosaka M, Kuroda R (2010) Bone regeneration properties of granulocyte colony-stimulating factor via neovascularization and osteogenesis. Tissue Eng Part A 16(10):3271–3284

    CAS  PubMed  Google Scholar 

  • Iwamoto T, Okamoto H, Toyama Y, Momohara S (2008) Molecular aspects of rheumatoid arthritis: chemokines in the joints of patients. FEBS J 275(18):4448–4455

    CAS  PubMed  Google Scholar 

  • Jaeger K, Bruenle S, Weinert T, Guba W, Muehle J, Miyazaki T, Weber M, Furrer A, Haenggi N, Tetaz T, Huang CY, Mattle D, Vonach JM, Gast A, Kuglstatter A, Rudolph MG, Nogly P, Benz J, Dawson RJP, Standfuss J (2019) Structural basis for allosteric ligand recognition in the human CC chemokine receptor 7. Cell 178(5):1222–1230.e1210

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jung Y, Wang J, Schneider A, Sun YX, Koh-Paige AJ, Osman NI, McCauley LK, Taichman RS (2006) Regulation of SDF-1 (CXCL12) production by osteoblasts; a possible mechanism for stem cell homing. Bone 38(4):497–508

    CAS  PubMed  Google Scholar 

  • Kasamon YL, Chen H, de Claro RA, Nie L, Ye J, Blumenthal GM, Farrell AT, Pazdur R (2019) FDA approval summary: mogamulizumab-kpkc for mycosis fungoides and sézary syndrome. Clin Cancer Res 25(24):7275–7280

    CAS  PubMed  Google Scholar 

  • Kim MS, Day CJ, Morrison NA (2005) MCP-1 is induced by receptor activator of nuclear factor-{kappa}B ligand, promotes human osteoclast fusion, and rescues granulocyte macrophage colony-stimulating factor suppression of osteoclast formation. J Biol Chem 280(16):16163–16169

    CAS  PubMed  Google Scholar 

  • Kim MS, Magno CL, Day CJ, Morrison NA (2006) Induction of chemokines and chemokine receptors CCR2b and CCR4 in authentic human osteoclasts differentiated with RANKL and osteoclast like cells differentiated by MCP-1 and RANTES. J Cell Biochem 97(3):512–518

    CAS  PubMed  Google Scholar 

  • Kindstedt E, Holm CK, Sulniute R, Martinez-Carrasco I, Lundmark R, Lundberg P (2017) CCL11, a novel mediator of inflammatory bone resorption. Sci Rep 7(1):5334

    PubMed  PubMed Central  Google Scholar 

  • Kitaori T, Ito H, Schwarz EM, Tsutsumi R, Yoshitomi H, Oishi S, Nakano M, Fujii N, Nagasawa T, Nakamura T (2009) Stromal cell-derived factor 1/CXCR4 signaling is critical for the recruitment of mesenchymal stem cells to the fracture site during skeletal repair in a mouse model. Arthritis Rheum 60(3):813–823

    CAS  PubMed  Google Scholar 

  • Kitase Y, Lee S, Gluhak-Heinrich J, Johnson ML, Harris SE, Bonewald LF (2014) CCL7 is a protective factor secreted by mechanically loaded osteocytes. J Dent Res 93(11):1108–1115

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi K, Toguchida J, Karin M, Kato T (2015) IKKβ in postnatal perichondrium remotely controls endochondral ossification of the growth plate through downregulation of MCP-5. Cell Death Differ 22(5):852–861

    CAS  PubMed  Google Scholar 

  • Koizumi K, Saitoh Y, Minami T, Takeno N, Tsuneyama K, Miyahara T, Nakayama T, Sakurai H, Takano Y, Nishimura M, Imai T, Yoshie O, Saiki I (2009) Role of CX3CL1/fractalkine in osteoclast differentiation and bone resorption. J Immunol 183(12):7825–7831

    CAS  PubMed  Google Scholar 

  • Kolar P, Schmidt-Bleek K, Schell H, Gaber T, Toben D, Schmidmaier G, Perka C, Buttgereit F, Duda GN (2010) The early fracture hematoma and its potential role in fracture healing. Tissue Eng Part B Rev 16(4):427–434

    PubMed  Google Scholar 

  • Könnecke I, Serra A, El Khassawna T, Schlundt C, Schell H, Hauser A, Ellinghaus A, Volk HD, Radbruch A, Duda GN, Schmidt-Bleek K (2014) T and B cells participate in bone repair by infiltrating the fracture callus in a two-wave fashion. Bone 64:155–165

    PubMed  Google Scholar 

  • Kovtun A, Bergdolt S, Wiegner R, Radermacher P, Huber-Lang M, Ignatius A (2016) The crucial role of neutrophil granulocytes in bone fracture healing. Eur Cell Mater 32:152–162

    CAS  PubMed  Google Scholar 

  • Kuan WP, Tam LS, Wong CK, Ko FW, Li T, Zhu T, Li EK (2010) CXCL 9 and CXCL 10 as sensitive markers of disease activity in patients with rheumatoid arthritis. J Rheumatol 37(2):257–264

    CAS  PubMed  Google Scholar 

  • Kwak HB, Ha H, Kim HN, Lee JH, Kim HS, Lee S, Kim HM, Kim JY, Kim HH, Song YW, Lee ZH (2008) Reciprocal cross-talk between RANKL and interferon-gamma-inducible protein 10 is responsible for bone-erosive experimental arthritis. Arthritis Rheum 58(5):1332–1342

    CAS  PubMed  Google Scholar 

  • Lacey DL, Timms E, Tan HL, Kelley MJ, Dunstan CR, Burgess T, Elliott R, Colombero A, Elliott G, Scully S, Hsu H, Sullivan J, Hawkins N, Davy E, Capparelli C, Eli A, Qian YX, Kaufman S, Sarosi I, Shalhoub V, Senaldi G, Guo J, Delaney J, Boyle WJ (1998) Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93(2):165–176

    CAS  PubMed  Google Scholar 

  • Lean JM, Murphy C, Fuller K, Chambers TJ (2002) CCL9/MIP-1gamma and its receptor CCR1 are the major chemokine ligand/receptor species expressed by osteoclasts. J Cell Biochem 87(4):386–393

    CAS  PubMed  Google Scholar 

  • Lee JH, Kim HN, Kim KO, Jin WJ, Lee S, Kim HH, Ha H, Lee ZH (2012) CXCL10 promotes osteolytic bone metastasis by enhancing cancer outgrowth and osteoclastogenesis. Cancer Res 72(13):3175–3186

    CAS  PubMed  Google Scholar 

  • Lee J, Park C, Kim HJ, Lee YD, Lee ZH, Song YW, Kim HH (2017) Stimulation of osteoclast migration and bone resorption by C-C chemokine ligands 19 and 21. Exp Mol Med 49(7):e358

    PubMed  PubMed Central  Google Scholar 

  • Leucht P, Temiyasathit S, Russell A, Arguello JF, Jacobs CR, Helms JA, Castillo AB (2013) CXCR4 antagonism attenuates load-induced periosteal bone formation in mice. J Orthop Res 31(11):1828–1838

    CAS  PubMed  Google Scholar 

  • Li C, Zhao J, Sun L, Yao Z, Liu R, Huang J, Liu X (2012) RANKL downregulates cell surface CXCR6 expression through JAK2/STAT3 signaling pathway during osteoclastogenesis. Biochem Biophys Res Commun 429(3–4):156–162

    CAS  PubMed  Google Scholar 

  • Lima ILA, Silva JMD, Rodrigues LFD, Madureira DF, Fonseca AC, Garlet GP, Teixeira MM, Russo RC, Fukada SY, Silva TAD (2017) Contribution of atypical chemokine receptor 2/ackr2 in bone remodeling. Bone 101:113–122

    CAS  PubMed  Google Scholar 

  • Lisignoli G, Toneguzzi S, Grassi F, Piacentini A, Tschon M, Cristino S, Gualtieri G, Facchini A (2002) Different chemokines are expressed in human arthritic bone biopsies: IFN-gamma and IL-6 differently modulate IL-8, MCP-1 and rantes production by arthritic osteoblasts. Cytokine 20(5):231–238

    CAS  PubMed  Google Scholar 

  • Lisignoli G, Piacentini A, Toneguzzi S, Grassi F, Tschon M, Cristino S, Facchini A, Mariani E (2003a) Age-associated changes in functional response to CXCR3 and CXCR5 chemokine receptors in human osteoblasts. Biogerontology 4(5):309–317

    CAS  PubMed  Google Scholar 

  • Lisignoli G, Toneguzzi S, Piacentini A, Cattini L, Lenti A, Tschon M, Cristino S, Grassi F, Facchini A (2003b) Human osteoblasts express functional CXC chemokine receptors 3 and 5: activation by their ligands, CXCL10 and CXCL13, significantly induces alkaline phosphatase and beta-N-acetylhexosaminidase release. J Cell Physiol 194(1):71–79

    CAS  PubMed  Google Scholar 

  • Lisignoli G, Piacentini A, Cristino S, Grassi F, Cavallo C, Cattini L, Tonnarelli B, Manferdini C, Facchini A (2007) CCL20 chemokine induces both osteoblast proliferation and osteoclast differentiation: increased levels of CCL20 are expressed in subchondral bone tissue of rheumatoid arthritis patients. J Cell Physiol 210(3):798–806

    CAS  PubMed  Google Scholar 

  • Liu YC, Kao YT, Huang WK, Lin KY, Wu SC, Hsu SC, Schuyler SC, Li LY, Leigh Lu F, Lu J (2014) CCL5/RANTES is important for inducing osteogenesis of human mesenchymal stem cells and is regulated by dexamethasone. Biosci Trends 8(3):138–143

    PubMed  Google Scholar 

  • Liu W, Wang P, Xie Z, Wang S, Ma M, Li J, Li M, Cen S, Tang S, Zheng G, Ye G, Wu X, Wu Y, Shen H (2019) Abnormal inhibition of osteoclastogenesis by mesenchymal stem cells through the miR-4284/CXCL5 axis in ankylosing spondylitis. Cell Death Dis 10(3):188

    PubMed  PubMed Central  Google Scholar 

  • Longobardi L, Li T, Myers TJ, Rear L, Ozkan H, Li Y, Contaldo C, Spagnoli A (2012) TGF-β type II receptor/MCP-5 axis: at the crossroad between joint and growth plate development. Dev Cell 23(1):71–81

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lu Y, Cai Z, Xiao G, Keller ET, Mizokami A, Yao Z, Roodman GD, Zhang J (2007) Monocyte chemotactic protein-1 mediates prostate cancer-induced bone resorption. Cancer Res 67(8):3646–3653

    CAS  PubMed  Google Scholar 

  • Matic I, Matthews BG, Wang X, Dyment NA, Worthley DL, Rowe DW, Grcevic D, Kalajzic I (2016) Quiescent bone lining cells are a major source of osteoblasts during adulthood. Stem Cells 34(12):2930–2942

    CAS  PubMed  PubMed Central  Google Scholar 

  • Matloubian M, David A, Engel S, Ryan JE, Cyster JG (2000) A transmembrane CXC chemokine is a ligand for HIV-coreceptor Bonzo. Nat Immunol 1(4):298–304

    CAS  PubMed  Google Scholar 

  • Millard CJ, Ludeman JP, Canals M, Bridgford JL, Hinds MG, Clayton DJ, Christopoulos A, Payne RJ, Stone MJ (2014) Structural basis of receptor sulfotyrosine recognition by a CC chemokine: the N-terminal region of CCR3 bound to CCL11/eotaxin-1. Structure 22(11):1571–1581

    CAS  PubMed  Google Scholar 

  • Miller SC, de Saint-Georges L, Bowman BM, Jee WS (1989) Bone lining cells: structure and function. Scanning Microsc 3(3):953–960; discussion 960

    CAS  PubMed  Google Scholar 

  • Miyamoto K, Ninomiya K, Sonoda KH, Miyauchi Y, Hoshi H, Iwasaki R, Miyamoto H, Yoshida S, Sato Y, Morioka H, Chiba K, Egashira K, Suda T, Toyama Y, Miyamoto T (2009) MCP-1 expressed by osteoclasts stimulates osteoclastogenesis in an autocrine/paracrine manner. Biochem Biophys Res Commun 383(3):373–377

    CAS  PubMed  Google Scholar 

  • Miyazaki Y, Nakayamada S, Kubo S, Nakano K, Iwata S, Miyagawa I, Ma X, Trimova G, Sakata K, Tanaka Y (2018) Th22 cells promote osteoclast differentiation via production of IL-22 in rheumatoid arthritis. Front Immunol 9:2901

    CAS  PubMed  PubMed Central  Google Scholar 

  • Molloy AP, Martin FT, Dwyer RM, Griffin TP, Murphy M, Barry FP, Brien T, Kerin MJ (2009) Mesenchymal stem cell secretion of chemokines during differentiation into osteoblasts, and their potential role in mediating interactions with breast cancer cells. Int J Cancer 124(2):326–332

    CAS  PubMed  Google Scholar 

  • Nakamura ES, Koizumi K, Kobayashi M, Saitoh Y, Arita Y, Nakayama T, Sakurai H, Yoshie O, Saiki I (2006) RANKL-induced CCL22/macrophage-derived chemokine produced from osteoclasts potentially promotes the bone metastasis of lung cancer expressing its receptor CCR4. Clin Exp Metastasis 23(1):9–18

    CAS  PubMed  Google Scholar 

  • Nakao K, Aoyama M, Fukuoka H, Fujita M, Miyazawa K, Asai K, Goto S (2009) IGF2 modulates the microenvironment for osteoclastogenesis. Biochem Biophys Res Commun 378(3):462–466

    CAS  PubMed  Google Scholar 

  • Nervi B, Link DC, DiPersio JF (2006) Cytokines and hematopoietic stem cell mobilization. J Cell Biochem 99(3):690–705

    CAS  PubMed  Google Scholar 

  • Oba Y, Lee JW, Ehrlich LA, Chung HY, Jelinek DF, Callander NS, Horuk R, Choi SJ, Roodman GD (2005) MIP-1alpha utilizes both CCR1 and CCR5 to induce osteoclast formation and increase adhesion of myeloma cells to marrow stromal cells. Exp Hematol 33(3):272–278

    CAS  PubMed  Google Scholar 

  • Okamatsu Y, Kim D, Battaglino R, Sasaki H, Späte U, Stashenko P (2004) MIP-1 gamma promotes receptor-activator-of-NF-kappa-B-ligand-induced osteoclast formation and survival. J Immunol 173(3):2084–2090

    CAS  PubMed  Google Scholar 

  • Onan D, Allan EH, Quinn JM, Gooi JH, Pompolo S, Sims NA, Gillespie MT, Martin TJ (2009) The chemokine Cxcl1 is a novel target gene of parathyroid hormone (PTH)/PTH-related protein in committed osteoblasts. Endocrinology 150(5):2244–2253

    CAS  PubMed  Google Scholar 

  • Oswald C, Rappas M, Kean J, Doré AS, Errey JC, Bennett K, Deflorian F, Christopher JA, Jazayeri A, Mason JS, Congreve M, Cooke RM, Marshall FH (2016) Intracellular allosteric antagonism of the CCR9 receptor. Nature 540(7633):462–465

    CAS  PubMed  Google Scholar 

  • Ota K, Quint P, Weivoda MM, Ruan M, Pederson L, Westendorf JJ, Khosla S, Oursler MJ (2013) Transforming growth factor beta 1 induces CXCL16 and leukemia inhibitory factor expression in osteoclasts to modulate migration of osteoblast progenitors. Bone 57(1):68–75

    CAS  PubMed  Google Scholar 

  • Panezai J, Ghaffar A, Altamash M, Sundqvist KG, Engström PE, Larsson A (2017) Correlation of serum cytokines, chemokines, growth factors and enzymes with periodontal disease parameters. PLoS One 12(11):e0188945

    PubMed  PubMed Central  Google Scholar 

  • Park SH, Das BB, Casagrande F, Tian Y, Nothnagel HJ, Chu M, Kiefer H, Maier K, de Angelis AA, Marassi FM, Opella SJ (2012) Structure of the chemokine receptor CXCR1 in phospholipid bilayers. Nature 491(7426):779–783

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pathak JL, Bakker AD, Verschueren P, Lems WF, Luyten FP, Klein-Nulend J, Bravenboer N (2015) CXCL8 and CCL20 enhance osteoclastogenesis via modulation of cytokine production by human primary osteoblasts. PLoS One 10(6):e0131041

    PubMed  PubMed Central  Google Scholar 

  • Pelus LM, Horowitz D, Cooper SC, King AG (2002) Peripheral blood stem cell mobilization. A role for CXC chemokines. Crit Rev Oncol Hematol 43(3):257–275

    PubMed  Google Scholar 

  • Pickens SR, Chamberlain ND, Volin MV, Pope RM, Talarico NE, Mandelin AM, Shahrara S (2012) Role of the CCL21 and CCR7 pathways in rheumatoid arthritis angiogenesis. Arthritis Rheum 64(8):2471–2481

    CAS  PubMed  PubMed Central  Google Scholar 

  • Prisby RD (2017) Mechanical, hormonal and metabolic influences on blood vessels, blood flow and bone. J Endocrinol 235(3):R77–R100

    CAS  PubMed  PubMed Central  Google Scholar 

  • Raskovalova T, Deegan PB, Yang R, Pavlova E, Stirnemann J, Labarère J, Zimran A, Mistry PK, Berger M (2017) Plasma chitotriosidase activity versus CCL18 level for assessing type I Gaucher disease severity: protocol for a systematic review with meta-analysis of individual participant data. Syst Rev 6(1):87

    PubMed  PubMed Central  Google Scholar 

  • Repeke CE, Ferreira SB, Vieira AE, Silveira EM, Avila-Campos MJ, da Silva JS, Santos CF, Campanelli AP, Trombone AP, Garlet GP (2011) Dose-response met-RANTES treatment of experimental periodontitis: a narrow edge between the disease severity attenuation and infection control. PLoS One 6(7):e22526

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rodan GA, Martin TJ (1981) Role of osteoblasts in hormonal control of bone resorption – a hypothesis. Calcif Tissue Int 33(4):349–351

    CAS  PubMed  Google Scholar 

  • Shahnazari M, Chu V, Wronski TJ, Nissenson RA, Halloran BP (2013) CXCL12/CXCR4 signaling in the osteoblast regulates the mesenchymal stem cell and osteoclast lineage populations. FASEB J 27(9):3505–3513

    CAS  PubMed  Google Scholar 

  • Shaik S, Martin EC, Hayes DJ, Gimble JM, Devireddy RV (2019) Transcriptomic profiling of adipose derived stem cells undergoing osteogenesis by RNA-Seq. Sci Rep 9(1):11800

    PubMed  PubMed Central  Google Scholar 

  • Shen PC, Lu CS, Shiau AL, Lee CH, Jou IM, Hsieh JL (2013) Lentiviral small hairpin RNA knockdown of macrophage inflammatory protein-1γ ameliorates experimentally induced osteoarthritis in mice. Hum Gene Ther 24(10):871–882

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shen Q, Fan X, Jiang M, Ye Z, Zhou Y, Tan WS (2019) Inhibiting expression of Cxcl9 promotes angiogenesis in MSCs-HUVECs co-culture. Arch Biochem Biophys 675:108108

    CAS  PubMed  Google Scholar 

  • Shigeno Y, Ashton BA (1995) Human bone-cell proliferation in vitro decreases with human donor age. J Bone Joint Surg Br 77(1):139–142

    CAS  PubMed  Google Scholar 

  • Silva TA, Garlet GP, Fukada SY, Silva JS, Cunha FQ (2007) Chemokines in oral inflammatory diseases: apical periodontitis and periodontal disease. J Dent Res 86(4):306–319

    CAS  PubMed  Google Scholar 

  • Simonet WS, Lacey DL, Dunstan CR, Kelley M, Chang MS, Lüthy R, Nguyen HQ, Wooden S, Bennett L, Boone T, Shimamoto G, DeRose M, Elliott R, Colombero A, Tan HL, Trail G, Sullivan J, Davy E, Bucay N, Renshaw-Gegg L, Hughes TM, Hill D, Pattison W, Campbell P, Sander S, Van G, Tarpley J, Derby P, Lee R, Boyle WJ (1997) Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 89(2):309–319

    CAS  PubMed  Google Scholar 

  • Stolzing A, Jones E, McGonagle D, Scutt A (2008) Age-related changes in human bone marrow-derived mesenchymal stem cells: consequences for cell therapies. Mech Ageing Dev 129(3):163–173

    CAS  PubMed  Google Scholar 

  • Su Y, Zhou Y, Sun YJ, Wang YL, Yin JY, Huang YJ, Zhang JJ, He AN, Han K, Zhang HZ, Yao Y, Lv XB, Hu HY (2019) Macrophage-derived CCL18 promotes osteosarcoma proliferation and migration by upregulating the expression of UCA1. J Mol Med 97(1):49–61

    CAS  PubMed  Google Scholar 

  • Sul OJ, Ke K, Kim WK, Kim SH, Lee SC, Kim HJ, Kim SY, Suh JH, Choi HS (2012) Absence of MCP-1 leads to elevated bone mass via impaired actin ring formation. J Cell Physiol 227(4):1619–1627

    CAS  PubMed  Google Scholar 

  • Sundaram K, Rao DS, Ries WL, Reddy SV (2013) CXCL5 stimulation of RANK ligand expression in Paget’s disease of bone. Lab Investig 93(4):472–479

    CAS  PubMed  Google Scholar 

  • Syversen SW, Goll GL, Haavardsholm EA, Bøyesen P, Lea T, Kvien TK (2008) A high serum level of eotaxin (CCL 11) is associated with less radiographic progression in early rheumatoid arthritis patients. Arthritis Res Ther 10(2):R28

    PubMed  PubMed Central  Google Scholar 

  • Taichman RS, Reilly MJ, Matthews LS (2000) Human osteoblast-like cells and osteosarcoma cell lines synthesize macrophage inhibitory protein 1alpha in response to interleukin 1beta and tumour necrosis factor alpha stimulation in vitro. Br J Haematol 108(2):275–283

    CAS  PubMed  Google Scholar 

  • Tan Q, Zhu Y, Li J, Chen Z, Han GW, Kufareva I, Li T, Ma L, Fenalti G, Li J, Zhang W, Xie X, Yang H, Jiang H, Cherezov V, Liu H, Stevens RC, Zhao Q, Wu B (2013) Structure of the CCR5 chemokine receptor-HIV entry inhibitor maraviroc complex. Science 341(6152):1387–1390

    CAS  PubMed  Google Scholar 

  • Thevenot PT, Nair AM, Shen J, Lotfi P, Ko CY, Tang L (2010) The effect of incorporation of SDF-1alpha into PLGA scaffolds on stem cell recruitment and the inflammatory response. Biomaterials 31(14):3997–4008

    CAS  PubMed  PubMed Central  Google Scholar 

  • Toben D, Schroeder I, El Khassawna T, Mehta M, Hoffmann JE, Frisch JT, Schell H, Lienau J, Serra A, Radbruch A, Duda GN (2011) Fracture healing is accelerated in the absence of the adaptive immune system. J Bone Miner Res 26(1):113–124

    CAS  PubMed  Google Scholar 

  • Trehan SK, Zambrana L, Jo JE, Purdue E, Karamitros A, Nguyen JT, Lane JM (2018) An alternative macrophage activation pathway regulator, CHIT1, may provide a serum and synovial fluid biomarker of periprosthetic osteolysis. HSS J 14(2):148–152

    PubMed  Google Scholar 

  • Trost Z, Trebse R, Prezelj J, Komadina R, Logar DB, Marc J (2010) A microarray based identification of osteoporosis-related genes in primary culture of human osteoblasts. Bone 46(1):72–80

    CAS  PubMed  Google Scholar 

  • Ullah TR (2019) The role of CXCR4 in multiple myeloma: cells’ journey from bone marrow to beyond. J Bone Oncol 17:100253

    PubMed  PubMed Central  Google Scholar 

  • Usui M, Okamatsu Y, Sato T, Hanatani T, Moritani Y, Sano K, Yamamoto M, Nakashima K (2016) Thymus-expressed chemokine enhances Porphyromonas gingivalis LPS-induced osteoclast formation via NFATc1 activation. Arch Oral Biol 66:77–85

    CAS  PubMed  Google Scholar 

  • Valerio MS, Herbert BA, Basilakos DS, Browne C, Yu H, Kirkwood KL (2015) Critical role of MKP-1 in lipopolysaccharide-induced osteoclast formation through CXCL1 and CXCL2. Cytokine 71(1):71–80

    CAS  PubMed  Google Scholar 

  • Vallet S, Pozzi S, Patel K, Vaghela N, Fulciniti MT, Veiby P, Hideshima T, Santo L, Cirstea D, Scadden DT, Anderson KC, Raje N (2011) A novel role for CCL3 (MIP-1α) in myeloma-induced bone disease via osteocalcin downregulation and inhibition of osteoblast function. Leukemia 25(7):1174–1181

    CAS  PubMed  PubMed Central  Google Scholar 

  • Van Raemdonck K, Umar S, Palasiewicz K, Volkov S, Volin MV, Arami S, Chang HJ, Zanotti B, Sweiss N, Shahrara S (2019) CCL21/CCR7 signaling in macrophages promotes joint inflammation and Th17-mediated osteoclast formation in rheumatoid arthritis. Cell Mol Life Sci. https://doi.org/10.1007/s00018-019-03235-w

  • Vater A, Klussmann S (2015) Turning mirror-image oligonucleotides into drugs: the evolution of Spiegelmer(®) therapeutics. Drug Discov Today 20(1):147–155

    CAS  PubMed  Google Scholar 

  • Votta BJ, White JR, Dodds RA, James IE, Connor JR, Lee-Rykaczewski E, Eichman CF, Kumar S, Lark MW, Gowen M (2000) CKbeta-8 [CCL23], a novel CC chemokine, is chemotactic for human osteoclast precursors and is expressed in bone tissues. J Cell Physiol 183(2):196–207

    CAS  PubMed  Google Scholar 

  • Wang W, Soto H, Oldham ER, Buchanan ME, Homey B, Catron D, Jenkins N, Copeland NG, Gilbert DJ, Nguyen N, Abrams J, Kershenovich D, Smith K, McClanahan T, Vicari AP, Zlotnik A (2000) Identification of a novel chemokine (CCL28), which binds CCR10 (GPR2). J Biol Chem 275(29):22313–22323

    CAS  PubMed  Google Scholar 

  • Weitzmann MN (2017) Bone and the immune system. Toxicol Pathol 45(7):911–924

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wen Y, Guo X, Hao J, Xiao X, Wang W, Wu C, Wang S, Yang T, Shen H, Chen X, Tan L, Tian Q, Deng HW, Zhang F (2016) Integrative analysis of genome-wide association studies and gene expression profiles identified candidate genes for osteoporosis in Kashin-Beck disease patients. Osteoporos Int 27(3):1041–1046

    CAS  PubMed  Google Scholar 

  • Wilgus TA, Roy S, McDaniel JC (2013) Neutrophils and wound repair: positive actions and negative reactions. Adv Wound Care 2(7):379–388

    Google Scholar 

  • Wu B, Chien EY, Mol CD, Fenalti G, Liu W, Katritch V, Abagyan R, Brooun A, Wells P, Bi FC, Hamel DJ, Kuhn P, Handel TM, Cherezov V, Stevens RC (2010) Structures of the CXCR4 chemokine GPCR with small-molecule and cyclic peptide antagonists. Science 330(6007):1066–1071

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu AC, Raggatt LJ, Alexander KA, Pettit AR (2013) Unraveling macrophage contributions to bone repair. Bonekey Rep 2:373

    PubMed  PubMed Central  Google Scholar 

  • Xu S, Zhang Y, Liu B, Li K, Huang B, Yan B, Zhang Z, Liang K, Jia C, Lin J, Zeng C, Cai D, Jin D, Jiang Y, Bai X (2016) Activation of mTORC1 in B lymphocytes promotes osteoclast formation via regulation of β-catenin and RANKL/OPG. J Bone Miner Res 31(7):1320–1333

    CAS  PubMed  Google Scholar 

  • Xuan W, Feng X, Qian C, Peng L, Shi Y, Xu L, Wang F, Tan W (2017) Osteoclast differentiation gene expression profiling reveals chemokine CCL4 mediates RANKL-induced osteoclast migration and invasion via PI3K pathway. Cell Biochem Funct 35(3):171–177

    CAS  PubMed  Google Scholar 

  • Yang M, Mailhot G, MacKay CA, Mason-Savas A, Aubin J, Odgren PR (2006) Chemokine and chemokine receptor expression during colony stimulating factor-1-induced osteoclast differentiation in the toothless osteopetrotic rat: a key role for CCL9 (MIP-1gamma) in osteoclastogenesis in vivo and in vitro. Blood 107(6):2262–2270

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Zhou X, Li Y, Chen A, Liang W, Liang G, Huang B, Li Q, Jin D (2019) CXCL2 attenuates osteoblast differentiation by inhibiting the ERK1/2 signaling pathway. J Cell Sci 132(16). pii: jcs230490

    Google Scholar 

  • Yano S, Mentaverri R, Kanuparthi D, Bandyopadhyay S, Rivera A, Brown EM, Chattopadhyay N (2005) Functional expression of beta-chemokine receptors in osteoblasts: role of regulated upon activation, normal T cell expressed and secreted (RANTES) in osteoblasts and regulation of its secretion by osteoblasts and osteoclasts. Endocrinology 146(5):2324–2335

    CAS  PubMed  Google Scholar 

  • Yasuda H, Shima N, Nakagawa N, Yamaguchi K, Kinosaki M, Mochizuki S, Tomoyasu A, Yano K, Goto M, Murakami A, Tsuda E, Morinaga T, Higashio K, Udagawa N, Takahashi N, Suda T (1998) Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci U S A 95(7):3597–3602

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yoo HI, Kang JH, Yang SY, Yong JH, Moon JS, Kim MS, Jung JY, Koh JT, Kim WJ, Oh WM, Lee EJ, Kim SH (2011) Differential expression of cxcl-14 during eruptive movement of rat molar germs. J Exp Zool Part B Mol Dev Evol 316(6):418–426

    CAS  Google Scholar 

  • Yu X, Huang Y, Collin-Osdoby P, Osdoby P (2003) Stromal cell-derived factor-1 (SDF-1) recruits osteoclast precursors by inducing chemotaxis, matrix metalloproteinase-9 (MMP-9) activity, and collagen transmigration. J Bone Miner Res 18(8):1404–1418

    CAS  PubMed  Google Scholar 

  • Yu X, Huang Y, Collin-Osdoby P, Osdoby P (2004) CCR1 chemokines promote the chemotactic recruitment, RANKL development, and motility of osteoclasts and are induced by inflammatory cytokines in osteoblasts. J Bone Miner Res 19(12):2065–2077

    CAS  PubMed  Google Scholar 

  • Yumimoto K, Sugiyama S, Mimori K, Nakayama KI (2019) Potentials of C-C motif chemokine 2-C-C chemokine receptor type 2 blockers including propagermanium as anticancer agents. Cancer Sci 110(7):2090–2099

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Niu C, Ye L, Huang H, He X, Tong WG, Ross J, Haug J, Johnson T, Feng JQ, Harris S, Wiedemann LM, Mishina Y, Li L (2003) Identification of the haematopoietic stem cell niche and control of the niche size. Nature 425(6960):836–841

    CAS  PubMed  Google Scholar 

  • Zhang Y, Ma C, Yu Y, Liu M, Yi C (2015) Are CXCL13/CXCR5/FAK critical regulators of MSCs migration and differentiation? Med Hypotheses 84(3):213–215

    CAS  PubMed  Google Scholar 

  • Zhao S, Wu B, Stevens RC (2019) Advancing chemokine GPCR structure based drug discovery. Structure 27(3):405–408

    CAS  PubMed  Google Scholar 

  • Zheng Y, Qin L, Zacarías NV, de Vries H, Han GW, Gustavsson M, Dabros M, Zhao C, Cherney RJ, Carter P, Stamos D, Abagyan R, Cherezov V, Stevens RC, IJzerman AP, Heitman LH, Tebben A, Kufareva I, Handel TM (2016) Structure of CC chemokine receptor 2 with orthosteric and allosteric antagonists. Nature 540(7633):458–461

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng Y, Ley SH, Hu FB (2018) Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat Rev Endocrinol 14(2):88–98

    PubMed  Google Scholar 

  • Zhu W, Boachie-Adjei O, Rawlins BA, Frenkel B, Boskey AL, Ivashkiv LB, Blobel CP (2007) A novel regulatory role for stromal-derived factor-1 signaling in bone morphogenic protein-2 osteogenic differentiation of mesenchymal C2C12 cells. J Biol Chem 282(26):18676–18685

    CAS  PubMed  Google Scholar 

  • Zhu W, Liang G, Huang Z, Doty SB, Boskey AL (2011) Conditional inactivation of the CXCR4 receptor in osteoprecursors reduces postnatal bone formation due to impaired osteoblast development. J Biol Chem 286(30):26794–26805

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annette Gilchrist .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gilchrist, A. (2020). Chemokines and Bone. In: Stern, P.H. (eds) Bone Regulators and Osteoporosis Therapy. Handbook of Experimental Pharmacology, vol 262. Springer, Cham. https://doi.org/10.1007/164_2020_349

Download citation

Publish with us

Policies and ethics