Skip to main content

Sigma-1 Receptor and Neuronal Excitability

  • Chapter
  • First Online:
Sigma Proteins: Evolution of the Concept of Sigma Receptors

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 244))

Abstract

The sigma-1 receptor (Sig-1R), via interaction with various proteins, including voltage-gated and ligand-gated ion channels (VGICs and LGICs), is involved in a plethora of neuronal functions. This capability to regulate a variety of ion channel targets endows the Sig-1R with a powerful capability to fine tune neuronal excitability, and thereby the transmission of information within brain circuits. This versatility may also explain why the Sig-1R is associated to numerous diseases at both peripheral and central levels. To date, how the Sig-1R chooses its targets and how the combinations of target modulations alter overall neuronal excitability is one of the challenges in the field of Sig-1R-dependent regulation of neuronal activity. Here, we will describe and discuss the latest findings on Sig-1R-dependent modulation of VGICs and LGICs, and provide hypotheses that may explain the diverse excitability outcomes that have been reported so far.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott GW, Goldstein SA (2001) Potassium channel subunits encoded by the KCNE gene family: physiology and pathophysiology of the MinK-related peptides (MiRPs). Mol Interv 1(2):95–107

    CAS  PubMed  Google Scholar 

  • Arikkath J, Campbell KP (2003) Auxiliary subunits: essential components of the voltage-gated calcium channel complex. Curr Opin Neurobiol 13(3):298–307

    Article  CAS  PubMed  Google Scholar 

  • Aydar E, Palmer CP, Klyachko VA, Jackson MB (2002) The sigma receptor as a ligand-regulated auxiliary potassium channel subunit. Neuron 34 (3):399–410. doi: S0896627302006773 (pii)

  • Balasuriya D, Stewart AP, Crottes D, Borgese F, Soriani O, Edwardson JM (2012) The sigma-1 receptor binds to the Nav1.5 voltage-gated Na+ channel with 4-fold symmetry. J Biol Chem 287(44):37021–37029. doi:10.1074/jbc.M112.382077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balasuriya D, Stewart AP, Edwardson JM (2013) The sigma-1 receptor interacts directly with GluN1 but not GluN2A in the GluN1/GluN2A NMDA receptor. J Neurosci 33(46):18219–18224. doi:10.1523/JNEUROSCI.3360-13.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balasuriya D, D’Sa L, Talker R, Dupuis E, Maurin F, Martin P, Borgese F, Soriani O, Edwardson JM (2014) A direct interaction between the sigma-1 receptor and the hERG voltage-gated K+ channel revealed by atomic force microscopy and homogeneous time-resolved fluorescence (HTRF(R)). J Biol Chem 289(46):32353–32363. doi:10.1074/jbc.M114.603506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartschat DK, Blaustein MP (1988) Psychotomimetic sigma-ligands, dexoxadrol and phencyclidine block the same presynaptic potassium channel in rat brain. J Physiol 403:341–353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bergeron R, Debonnel G, De Montigny C (1993) Modification of the N-methyl-D-aspartate response by antidepressant sigma receptor ligands. Eur J Pharmacol 240(2–3):319–323

    Article  CAS  PubMed  Google Scholar 

  • Bermack JE, Debonnel G (2001) Modulation of serotonergic neurotransmission by short- and long-term treatments with sigma ligands. Br J Pharmacol 134(3):691–699. doi:10.1038/sj.bjp.0704294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bermack JE, Debonnel G (2005) Distinct modulatory roles of sigma receptor subtypes on glutamatergic responses in the dorsal hippocampus. Synapse 55(1):37–44. doi:10.1002/syn.20085

    Article  CAS  PubMed  Google Scholar 

  • Bredt DS, Nicoll RA (2003) AMPA receptor trafficking at excitatory synapses. Neuron 40(2):361–379

    Article  CAS  PubMed  Google Scholar 

  • Brent PJ, Herd L, Saunders H, Sim AT, Dunkley PR (1997) Protein phosphorylation and calcium uptake into rat forebrain synaptosomes: modulation by the sigma ligand, 1,3-ditolylguanidine. J Neurochem 68(5):2201–2211

    Article  CAS  PubMed  Google Scholar 

  • Brown RE, Reymann KG (1996) Histamine H3 receptor-mediated depression of synaptic transmission in the dentate gyrus of the rat in vitro. J Physiol 496(Pt 1):175–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown RE, Stevens DR, Haas HL (2001) The physiology of brain histamine. Prog Neurobiol 63(6):637–672

    Article  CAS  PubMed  Google Scholar 

  • Calhoun JD, Isom LL (2014) The role of non-pore-forming beta subunits in physiology and pathophysiology of voltage-gated sodium channels. Handb Exp Pharmacol 221:51–89. doi:10.1007/978-3-642-41588-3_4

    Article  CAS  PubMed  Google Scholar 

  • Carnally SM, Johannessen M, Henderson RM, Jackson MB, Edwardson JM (2010) Demonstration of a direct interaction between sigma-1 receptors and acid-sensing ion channels. Biophys J 98(7):1182–1191. doi:10.1016/j.bpj.2009.12.4293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Catterall WA (2010) Signaling complexes of voltage-gated sodium and calcium channels. Neurosci Lett 486(2):107–116. doi:10.1016/j.neulet.2010.08.085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ceci A, Smith M, French ED (1988) Activation of the A10 mesolimbic system by the sigma-receptor agonist (+)SKF 10,047 can be blocked by rimcazole, a novel putative antipsychotic. Eur J Pharmacol 154(1):53–57

    Article  CAS  PubMed  Google Scholar 

  • Cendan CM, Pujalte JM, Portillo-Salido E, Montoliu L, Baeyens JM (2005) Formalin-induced pain is reduced in sigma(1) receptor knockout mice. Eur J Pharmacol 511(1):73–74. doi:10.1016/j.ejphar.2005.01.036

    Article  CAS  PubMed  Google Scholar 

  • Cerda O, Trimmer JS (2010) Analysis and functional implications of phosphorylation of neuronal voltage-gated potassium channels. Neurosci Lett 486(2):60–67. doi:10.1016/j.neulet.2010.06.064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng ZX, Lan DM, Wu PY, Zhu YH, Dong Y, Ma L, Zheng P (2008) Neurosteroid dehydroepiandrosterone sulphate inhibits persistent sodium currents in rat medial prefrontal cortex via activation of sigma-1 receptors. Exp Neurol 210(1):128–136. doi:10.1016/j.expneurol.2007.10.004

    Article  CAS  PubMed  Google Scholar 

  • Chevallier N, Keller E, Maurice T (2011) Behavioural phenotyping of knockout mice for the sigma-1 (sigma(1)) chaperone protein revealed gender-related anxiety, depressive-like and memory alterations. J Psychopharmacol 25(7):960–975. doi:10.1177/0269881111400648

    Article  CAS  PubMed  Google Scholar 

  • Church J, Fletcher EJ (1995) Blockade by sigma site ligands of high voltage-activated Ca2+ channels in rat and mouse cultured hippocampal pyramidal neurones. Br J Pharmacol 116(7):2801–2810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cormaci G, Mori T, Hayashi T, Su TP (2007) Protein kinase a activation down-regulates, whereas extracellular signal-regulated kinase activation up-regulates sigma-1 receptors in B-104 cells: implication for neuroplasticity. J Pharmacol Exp Ther 320(1):202–210. doi:10.1124/jpet.106.108415

    Article  CAS  PubMed  Google Scholar 

  • Crottes D, Martial S, Rapetti-Mauss R, Pisani DF, Loriol C, Pellissier B, Martin P, Chevet E, Borgese F, Soriani O (2011) Sig1R protein regulates hERG channel expression through a post-translational mechanism in leukemic cells. J Biol Chem 286(32):27947–27958. doi: M111.226738 (pii) 10.1074/jbc.M111.226738

  • Crottes D, Guizouarn H, Martin P, Borgese F, Soriani O (2013) The sigma-1 receptor: a regulator of cancer cell electrical plasticity? Front Physiol 4:175. doi:10.3389/fphys.2013.00175

    Article  PubMed  PubMed Central  Google Scholar 

  • Cuevas J, Behensky A, Deng W, Katnik C (2011) Afobazole modulates neuronal response to ischemia and acidosis via activation of sigma-1 receptors. J Pharmacol Exp Ther 339(1):152–160. doi:10.1124/jpet.111.182774

    Article  CAS  PubMed  Google Scholar 

  • Dolphin AC (2009) Calcium channel diversity: multiple roles of calcium channel subunits. Curr Opin Neurobiol 19(3):237–244. doi:10.1016/j.conb.2009.06.006

    Article  CAS  PubMed  Google Scholar 

  • Dong LY, Cheng ZX, Fu YM, Wang ZM, Zhu YH, Sun JL, Dong Y, Zheng P (2007) Neurosteroid dehydroepiandrosterone sulfate enhances spontaneous glutamate release in rat prelimbic cortex through activation of dopamine D1 and sigma-1 receptor. Neuropharmacology 52(3):966–974. doi:10.1016/j.neuropharm.2006.10.015

    Article  CAS  PubMed  Google Scholar 

  • Ellenbroek BA (2013) Histamine H(3) receptors, the complex interaction with dopamine and its implications for addiction. Br J Pharmacol 170(1):46–57. doi:10.1111/bph.12221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Entrena JM, Cobos EJ, Nieto FR, Cendan CM, Gris G, Del Pozo E, Zamanillo D, Baeyens JM (2009) Sigma-1 receptors are essential for capsaicin-induced mechanical hypersensitivity: studies with selective sigma-1 ligands and sigma-1 knockout mice. Pain 143(3):252–261. doi:10.1016/j.pain.2009.03.011

    Article  CAS  PubMed  Google Scholar 

  • Ferraro L, Frankowska M, Marcellino D, Zaniewska M, Beggiato S, Filip M, Tomasini MC, Antonelli T, Tanganelli S, Fuxe K (2012) A novel mechanism of cocaine to enhance dopamine d2-like receptor mediated neurochemical and behavioral effects. An in vivo and in vitro study. Neuropsychopharmacology 37(8):1856–1866. doi:10.1038/npp.2012.33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fishback JA, Robson MJ, Xu YT, Matsumoto RR (2010) Sigma receptors: potential targets for a new class of antidepressant drug. Pharmacol Ther 127(3):271–282. doi:10.1016/j.pharmthera.2010.04.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fontanilla D, Johannessen M, Hajipour AR, Cozzi NV, Jackson MB, Ruoho AE (2009) The hallucinogen N,N-dimethyltryptamine (DMT) is an endogenous sigma-1 receptor regulator. Science 323(5916):934–937. doi:10.1126/science.1166127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giese KP, Storm JF, Reuter D, Fedorov NB, Shao LR, Leicher T, Pongs O, Silva AJ (1998) Reduced K+ channel inactivation, spike broadening, and after-hyperpolarization in Kvbeta1.1-deficient mice with impaired learning. Learn Mem 5(4–5):257–273

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hawkins RD (2013) Possible contributions of a novel form of synaptic plasticity in Aplysia to reward, memory, and their dysfunctions in mammalian brain. Learn Mem 20(10):580–591. doi:10.1101/lm.031237.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayashi T, Su TP (2001) Regulating ankyrin dynamics: roles of sigma-1 receptors. Proc Natl Acad Sci U S A 98(2):491–496. doi:10.1073/pnas.021413698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayashi T, Su TP (2003) Intracellular dynamics of sigma-1 receptors (sigma(1) binding sites) in NG108-15 cells. J Pharmacol Exp Ther 306(2):726–733. doi:10.1124/jpet.103.051292

    Article  CAS  PubMed  Google Scholar 

  • Hayashi T, Su TP (2007) Sigma-1 receptor chaperones at the ER-mitochondrion interface regulate Ca(2+) signaling and cell survival. Cell 131(3):596–610. doi:10.1016/j.cell.2007.08.036

    Article  CAS  PubMed  Google Scholar 

  • Hayashi T, Maurice T, Su TP (2000) Ca(2+) signaling via sigma(1)-receptors: novel regulatory mechanism affecting intracellular Ca(2+) concentration. J Pharmacol Exp Ther 293(3):788–798

    CAS  PubMed  Google Scholar 

  • Hayashi T, Tsai SY, Mori T, Fujimoto M, Su TP (2011) Targeting ligand-operated chaperone sigma-1 receptors in the treatment of neuropsychiatric disorders. Expert Opin Ther Targets 15(5):557–577. doi:10.1517/14728222.2011.560837

    Article  CAS  PubMed  Google Scholar 

  • Heilstedt HA, Burgess DL, Anderson AE, Chedrawi A, Tharp B, Lee O, Kashork CD, Starkey DE, Wu YQ, Noebels JL, Shaffer LG, Shapira SK (2001) Loss of the potassium channel beta-subunit gene, KCNAB2, is associated with epilepsy in patients with 1p36 deletion syndrome. Epilepsia 42(9):1103–1111

    Article  CAS  PubMed  Google Scholar 

  • Herrera Y, Katnik C, Rodriguez JD, Hall AA, Willing A, Pennypacker KR, Cuevas J (2008) Sigma-1 receptor modulation of acid-sensing ion channel a (ASIC1a) and ASIC1a-induced Ca2+ influx in rat cortical neurons. J Pharmacol Exp Ther 327(2):491–502. doi:10.1124/jpet.108.143974

    Article  CAS  PubMed  Google Scholar 

  • Hille B (2001) Ionic channels of excitable membranes, 3rd edn. Sinauer Associates, Sunderland, MA

    Google Scholar 

  • Ishiwata K, Kobayashi T, Kawamura K, Matsuno K (2003) Age-related changes of the binding of (3h)SA4503 to sigma1 receptors in the rat brain. Ann Nucl Med 17(1):73–77

    Article  CAS  PubMed  Google Scholar 

  • Johannessen M, Ramachandran S, Riemer L, Ramos-Serrano A, Ruoho AE, Jackson MB (2009) Voltage-gated sodium channel modulation by sigma-receptors in cardiac myocytes and heterologous systems. Am J Physiol Cell Physiol 296(5):C1049–C1057. doi:10.1152/ajpcell.00431.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katz JL, Su TP, Hiranita T, Hayashi T, Tanda G, Kopajtic T, Tsai SY (2011) A role for sigma receptors in stimulant self administration and addiction. Pharmaceuticals (Basel) 4(6):880–914. doi:10.3390/ph4060880

    Article  CAS  Google Scholar 

  • Kennedy C, Henderson G (1990) Inhibition of potassium currents by the sigma receptor ligand (+)-3-(3-hydroxyphenyl)-N-(1-propyl)piperidine in sympathetic neurons of the mouse isolated hypogastric ganglion. Neuroscience 35(3):725–733

    Article  CAS  PubMed  Google Scholar 

  • Kim HW, Roh DH, Yoon SY, Seo HS, Kwon YB, Han HJ, Kim KW, Beitz AJ, Lee JH (2008) Activation of the spinal sigma-1 receptor enhances NMDA-induced pain via PKC- and PKA-dependent phosphorylation of the NR1 subunit in mice. Br J Pharmacol 154(5):1125–1134. doi:10.1038/bjp.2008.159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kinoshita M, Matsuoka Y, Suzuki T, Mirrielees J, Yang J (2012) Sigma-1 receptor alters the kinetics of Kv1.3 voltage gated potassium channels but not the sensitivity to receptor ligands. Brain Res 1452:1–9. doi: S0006-8993(12)00432-5 (pii) 10.1016/j.brainres.2012.02.070

  • Kourrich S, Su TP, Fujimoto M, Bonci A (2012) The sigma-1 receptor: roles in neuronal plasticity and disease. Trends Neurosci 35(12):762–771. doi:10.1016/j.tins.2012.09.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kourrich S, Hayashi T, Chuang JY, Tsai SY, Su TP, Bonci A (2013) Dynamic interaction between sigma-1 receptor and Kv1.2 shapes neuronal and behavioral responses to cocaine. Cell 152(1–2):236–247. doi:10.1016/j.cell.2012.12.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lamy C, Scuvee-Moreau J, Dilly S, Liegeois JF, Seutin V (2010) The sigma agonist 1,3-di-o-tolyl-guanidine directly blocks SK channels in dopaminergic neurons and in cell lines. Eur J Pharmacol 641(1):23–28. doi:10.1016/j.ejphar.2010.05.008

    Article  CAS  PubMed  Google Scholar 

  • Langa F, Codony X, Tovar V, Lavado A, Gimenez E, Cozar P, Cantero M, Dordal A, Hernandez E, Perez R, Monroy X, Zamanillo D, Guitart X, Montoliu L (2003) Generation and phenotypic analysis of sigma receptor type I (sigma 1) knockout mice. Eur J Neurosci 18(8):2188–2196

    Article  PubMed  Google Scholar 

  • Liang X, Wang RY (1998) Biphasic modulatory action of the selective sigma receptor ligand SR 31742A on N-methyl-D-aspartate-induced neuronal responses in the frontal cortex. Brain Res 807(1–2):208–213

    Article  CAS  PubMed  Google Scholar 

  • Lucas G, Rymar VV, Sadikot AF, Debonnel G (2008) Further evidence for an antidepressant potential of the selective sigma1 agonist SA 4503: electrophysiological, morphological and behavioural studies. Int J Neuropsychopharmacol 11(4):485–495. doi:10.1017/S1461145708008547

    Article  CAS  PubMed  Google Scholar 

  • Lujan R (2010) Organisation of potassium channels on the neuronal surface. J Chem Neuroanat 40(1):1–20. doi:10.1016/j.jchemneu.2010.03.003

    Article  CAS  PubMed  Google Scholar 

  • Lupardus PJ, Wilke RA, Aydar E, Palmer CP, Chen Y, Ruoho AE, Jackson MB (2000) Membrane-delimited coupling between sigma receptors and K+ channels in rat neurohypophysial terminals requires neither G-protein nor ATP. J Physiol 526(Pt 3):527–539. doi: PHY_0675 (pii)

    Google Scholar 

  • Luty AA, Kwok JB, Dobson-Stone C, Loy CT, Coupland KG, Karlstrom H, Sobow T, Tchorzewska J, Maruszak A, Barcikowska M, Panegyres PK, Zekanowski C, Brooks WS, Williams KL, Blair IP, Mather KA, Sachdev PS, Halliday GM, Schofield PR (2010) Sigma nonopioid intracellular receptor 1 mutations cause frontotemporal lobar degeneration-motor neuron disease. Ann Neurol 68(5):639–649. doi:10.1002/ana.22274

    Article  CAS  PubMed  Google Scholar 

  • Maffie J, Rudy B (2008) Weighing the evidence for a ternary protein complex mediating A-type K+ currents in neurons. J Physiol 586(Pt 23):5609–5623. doi:10.1113/jphysiol.2008.161620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marder E, Goaillard JM (2006) Variability, compensation and homeostasis in neuron and network function. Nat Rev Neurosci 7(7):563–574. doi:10.1038/nrn1949

    Article  CAS  PubMed  Google Scholar 

  • Marek GJ, Aghajanian GK (1998) The electrophysiology of prefrontal serotonin systems: therapeutic implications for mood and psychosis. Biol Psychiatry 44(11):1118–1127

    Article  CAS  PubMed  Google Scholar 

  • Marionneau C, Carrasquillo Y, Norris AJ, Townsend RR, Isom LL, Link AJ, Nerbonne JM (2012) The sodium channel accessory subunit Navbeta1 regulates neuronal excitability through modulation of repolarizing voltage-gated K(+) channels. J Neurosci 32(17):5716–5727. doi:10.1523/JNEUROSCI.6450-11.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinez-Espinosa PL, Yang C, Gonzalez-Perez V, Xia XM, Lingle CJ (2014) Knockout of the BK beta2 subunit abolishes inactivation of BK currents in mouse adrenal chromaffin cells and results in slow-wave burst activity. J Gen Physiol 144(4):275–295. doi:10.1085/jgp.201411253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maurice T, Su TP (2009) The pharmacology of sigma-1 receptors. Pharmacol Ther 124(2):195–206. doi: S0163-7258(09)00141-7 (pii) 10.1016/j.pharmthera.2009.07.001

  • Maurice T, Urani A, Phan VL, Romieu P (2001) The interaction between neuroactive steroids and the sigma1 receptor function: behavioral consequences and therapeutic opportunities. Brain Res Brain Res Rev 37(1–3):116–132

    Article  CAS  PubMed  Google Scholar 

  • Mavlyutov TA, Ruoho AE (2007) Ligand-dependent localization and intracellular stability of sigma-1 receptors in CHO-K1 cells. J Mol Signal 2:8. doi:10.1186/1750-2187-2-8

    Article  PubMed  PubMed Central  Google Scholar 

  • Meyer DA, Carta M, Partridge LD, Covey DF, Valenzuela CF (2002) Neurosteroids enhance spontaneous glutamate release in hippocampal neurons. Possible role of metabotropic sigma1-like receptors. J Biol Chem 277(32):28725–28732. doi:10.1074/jbc.M202592200

    Article  CAS  PubMed  Google Scholar 

  • Monnet FP, Debonnel G, Junien JL, De Montigny C (1990) N-methyl-D-aspartate-induced neuronal activation is selectively modulated by sigma receptors. Eur J Pharmacol 179(3):441–445

    Article  CAS  PubMed  Google Scholar 

  • Moreno E, Moreno-Delgado D, Navarro G, Hoffmann HM, Fuentes S, Rosell-Vilar S, Gasperini P, Rodriguez-Ruiz M, Medrano M, Mallol J, Cortes A, Casado V, Lluis C, Ferre S, Ortiz J, Canela E, McCormick PJ (2014) Cocaine disrupts histamine H3 receptor modulation of dopamine D1 receptor signaling: sigma1-D1-H3 receptor complexes as key targets for reducing cocaine’s effects. J Neurosci 34(10):3545–3558. doi:10.1523/JNEUROSCI.4147-13.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moriguchi S, Yamamoto Y, Ikuno T, Fukunaga K (2011) Sigma-1 receptor stimulation by dehydroepiandrosterone ameliorates cognitive impairment through activation of CaM kinase II, protein kinase C and extracellular signal-regulated kinase in olfactory bulbectomized mice. J Neurochem 117(5):879–891. doi:10.1111/j.1471-4159.2011.07256.x

    Article  CAS  PubMed  Google Scholar 

  • Morio Y, Tanimoto H, Yakushiji T, Morimoto Y (1994) Characterization of the currents induced by sigma ligands in NCB20 neuroblastoma cells. Brain Res 637(1–2):190–196

    Article  CAS  PubMed  Google Scholar 

  • Mtchedlishvili Z, Kapur J (2003) A presynaptic action of the neurosteroid pregnenolone sulfate on GABAergic synaptic transmission. Mol Pharmacol 64(4):857–864. doi:10.1124/mol.64.4.857

    Article  CAS  PubMed  Google Scholar 

  • Navarro G, Moreno E, Aymerich M, Marcellino D, McCormick PJ, Mallol J, Cortes A, Casado V, Canela EI, Ortiz J, Fuxe K, Lluis C, Ferre S, Franco R (2010) Direct involvement of sigma-1 receptors in the dopamine D1 receptor-mediated effects of cocaine. Proc Natl Acad Sci U S A 107(43):18676–18681. doi:10.1073/pnas.1008911107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Navarro G, Moreno E, Bonaventura J, Brugarolas M, Farre D, Aguinaga D, Mallol J, Cortes A, Casado V, Lluis C, Ferre S, Franco R, Canela E, McCormick PJ (2013) Cocaine inhibits dopamine D2 receptor signaling via sigma-1-D2 receptor heteromers. PLoS One 8(4):e61245. doi:10.1371/journal.pone.0061245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nusser Z (2009) Variability in the subcellular distribution of ion channels increases neuronal diversity. Trends Neurosci 32(5):267–274. doi:10.1016/j.tins.2009.01.003

    Article  CAS  PubMed  Google Scholar 

  • Ohi Y, Tsunekawa S, Haji A (2011) Dextromethorphan inhibits the glutamatergic synaptic transmission in the nucleus tractus solitarius of guinea pigs. J Pharmacol Sci 116(1):54–62

    Article  CAS  PubMed  Google Scholar 

  • Pabba M, Wong AY, Ahlskog N, Hristova E, Biscaro D, Nassrallah W, Ngsee JK, Snyder M, Beique JC, Bergeron R (2014) NMDA receptors are upregulated and trafficked to the plasma membrane after sigma-1 receptor activation in the rat hippocampus. J Neurosci 34(34):11325–11338. doi:10.1523/JNEUROSCI.0458-14.2014

    Article  PubMed  Google Scholar 

  • Pan B, Guo Y, Kwok WM, Hogan Q, Wu HE (2014) Sigma-1 receptor antagonism restores injury-induced decrease of voltage-gated Ca2+ current in sensory neurons. J Pharmacol Exp Ther 350(2):290–300. doi:10.1124/jpet.114.214320

    Article  PubMed  PubMed Central  Google Scholar 

  • Panyi G, Varga Z, Gaspar R (2004) Ion channels and lymphocyte activation. Immunol Lett 92(1–2):55–66. doi:10.1016/j.imlet.2003.11.020

    Article  CAS  PubMed  Google Scholar 

  • Phan VL, Urani A, Sandillon F, Privat A, Maurice T (2003) Preserved sigma1 (sigma1) receptor expression and behavioral efficacy in the aged C57BL/6 mouse. Neurobiol Aging 24(6):865–881

    Article  CAS  PubMed  Google Scholar 

  • Pongs O, Leicher T, Berger M, Roeper J, Bahring R, Wray D, Giese KP, Silva AJ, Storm JF (1999) Functional and molecular aspects of voltage-gated K+ channel beta subunits. Ann N Y Acad Sci 868:344–355

    Article  CAS  PubMed  Google Scholar 

  • Rothman RB, Reid A, Mahboubi A, Kim CH, De Costa BR, Jacobson AE, Rice KC (1991) Labeling by (3H)1,3-di(2-tolyl)guanidine of two high affinity binding sites in guinea pig brain: evidence for allosteric regulation by calcium channel antagonists and pseudoallosteric modulation by sigma ligands. Mol Pharmacol 39(2):222–232

    CAS  PubMed  Google Scholar 

  • Sabeti J, Nelson TE, Purdy RH, Gruol DL (2007) Steroid pregnenolone sulfate enhances NMDA-receptor-independent long-term potentiation at hippocampal CA1 synapses: role for L-type calcium channels and sigma-receptors. Hippocampus 17(5):349–369. doi:10.1002/hipo.20273

    Article  CAS  PubMed  Google Scholar 

  • Sabino V, Cottone P, Parylak SL, Steardo L, Zorrilla EP (2009) Sigma-1 receptor knockout mice display a depressive-like phenotype. Behav Brain Res 198(2):472–476. doi:10.1016/j.bbr.2008.11.036

    Article  CAS  PubMed  Google Scholar 

  • Sanguinetti MC, Jiang C, Curran ME, Keating MT (1995) A mechanistic link between an inherited and an acquired cardiac arrhythmia: HERG encodes the IKr potassium channel. Cell 81(2):299–307. doi: 0092-8674(95)90340-2 (pii)

    Google Scholar 

  • Schulze-Bahr E, Wang Q, Wedekind H, Haverkamp W, Chen Q, Sun Y, Rubie C, Hordt M, Towbin JA, Borggrefe M, Assmann G, Qu X, Somberg JC, Breithardt G, Oberti C, Funke H (1997) KCNE1 mutations cause jervell and Lange-Nielsen syndrome. Nat Genet 17(3):267–268. doi:10.1038/ng1197-267

    Article  CAS  PubMed  Google Scholar 

  • Shioda N, Ishikawa K, Tagashira H, Ishizuka T, Yawo H, Fukunaga K (2012) Expression of a truncated form of the endoplasmic reticulum chaperone protein, sigma1 receptor, promotes mitochondrial energy depletion and apoptosis. J Biol Chem 287(28):23318–23331. doi:10.1074/jbc.M112.349142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Splawski I, Tristani-Firouzi M, Lehmann MH, Sanguinetti MC, Keating MT (1997) Mutations in the hminK gene cause long QT syndrome and suppress IKs function. Nat Genet 17(3):338–340. doi:10.1038/ng1197-338

    Article  CAS  PubMed  Google Scholar 

  • Su TP, Hayashi T, Maurice T, Buch S, Ruoho AE (2010) The sigma-1 receptor chaperone as an inter-organelle signaling modulator. Trends Pharmacol Sci 31(12):557–566. doi:10.1016/j.tips.2010.08.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun W, Maffie JK, Lin L, Petralia RS, Rudy B, Hoffman DA (2011) DPP6 establishes the A-type K(+) current gradient critical for the regulation of dendritic excitability in CA1 hippocampal neurons. Neuron 71(6):1102–1115. doi:10.1016/j.neuron.2011.08.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tchedre KT, Huang RQ, Dibas A, Krishnamoorthy RR, Dillon GH, Yorio T (2008) Sigma-1 receptor regulation of voltage-gated calcium channels involves a direct interaction. Invest Ophthalmol Vis Sci 49(11):4993–5002. doi:10.1167/iovs.08-1867

    Article  PubMed  Google Scholar 

  • Trudeau MC, Warmke JW, Ganetzky B, Robertson GA (1995) HERG, a human inward rectifier in the voltage-gated potassium channel family. Science 269(5220):92–95

    Article  CAS  PubMed  Google Scholar 

  • Vacher H, Mohapatra DP, Trimmer JS (2008) Localization and targeting of voltage-dependent ion channels in mammalian central neurons. Physiol Rev 88(4):1407–1447. doi: 88/4/1407 (pii)10.1152/physrev.00002.2008

  • van Waarde A, Ramakrishnan NK, Rybczynska AA, Elsinga PH, Ishiwata K, Nijholt IM, Luiten PG, Dierckx RA (2011) The cholinergic system, sigma-1 receptors and cognition. Behav Brain Res 221(2):543–554. doi:10.1016/j.bbr.2009.12.043

    Article  PubMed  Google Scholar 

  • Wu XZ, Bell JA, Spivak CE, London ED, Su TP (1991) Electrophysiological and binding studies on intact NCB-20 cells suggest presence of a low affinity sigma receptor. J Pharmacol Exp Ther 257(1):351–359

    CAS  PubMed  Google Scholar 

  • Xie L, Gao S, Alcaire SM, Aoyagi K, Wang Y, Griffin JK, Stagljar I, Nagamatsu S, Zhen M (2013) NLF-1 delivers a sodium leak channel to regulate neuronal excitability and modulate rhythmic locomotion. Neuron 77(6):1069–1082. doi:10.1016/j.neuron.2013.01.018

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto H, Yamamoto T, Sagi N, Klenerova V, Goji K, Kawai N, Baba A, Takamori E, Moroji T (1995) Sigma ligands indirectly modulate the NMDA receptor-ion channel complex on intact neuronal cells via sigma 1 site. J Neurosci 15(1 Pt 2):731–736

    CAS  PubMed  Google Scholar 

  • Yoon SY, Roh DH, Seo HS, Kang SY, Moon JY, Song S, Beitz AJ, Lee JH (2010) An increase in spinal dehydroepiandrosterone sulfate (DHEAS) enhances NMDA-induced pain via phosphorylation of the NR1 subunit in mice: involvement of the sigma-1 receptor. Neuropharmacology 59(6):460–467. doi:10.1016/j.neuropharm.2010.06.007

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Cuevas J (2002) Sigma receptors inhibit high-voltage-activated calcium channels in rat sympathetic and parasympathetic neurons. J Neurophysiol 87(6):2867–2879

    CAS  PubMed  Google Scholar 

  • Zhang H, Cuevas J (2005) Sigma receptor activation blocks potassium channels and depresses neuroexcitability in rat intracardiac neurons. J Pharmacol Exp Ther 313(3):1387–1396. doi:10.1124/jpet.105.084152

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Katnik C, Cuevas J (2009) Sigma receptor activation inhibits voltage-gated sodium channels in rat intracardiac ganglion neurons. Int J Physiol Pathophysiol Pharmacol 2(1):1–11

    PubMed  PubMed Central  Google Scholar 

  • Zhang H, Katnik C, Cuevas J (2010) Sigma receptor activation inhibits voltage-gated sodium channels in rat intracardiac ganglion neurons. Int J Physiol Pathophysiol Pharmacol 2(1):1–11

    Google Scholar 

  • Zhang XJ, Liu LL, Wu Y, Jiang SX, Zhong YM, Yang XL (2011) Sigma receptor 1 is preferentially involved in modulation of N-methyl-D-aspartate receptor-mediated light-evoked excitatory postsynaptic currents in rat retinal ganglion cells. Neurosignals 19(2):110–116. doi:10.1159/000326784

    Article  CAS  PubMed  Google Scholar 

  • Zhang CL, Feng ZJ, Liu Y, Ji XH, Peng JY, Zhang XH, Zhen XC, Li BM (2012) Methylphenidate enhances NMDA-receptor response in medial prefrontal cortex via sigma-1 receptor: a novel mechanism for methylphenidate action. PLoS One 7(12):e51910. doi:10.1371/journal.pone.0051910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng P (2009) Neuroactive steroid regulation of neurotransmitter release in the CNS: action, mechanism and possible significance. Prog Neurobiol 89(2):134–152. doi:10.1016/j.pneurobio.2009.07.001

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saïd Kourrich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Kourrich, S. (2017). Sigma-1 Receptor and Neuronal Excitability. In: Kim, F., Pasternak, G. (eds) Sigma Proteins: Evolution of the Concept of Sigma Receptors. Handbook of Experimental Pharmacology, vol 244. Springer, Cham. https://doi.org/10.1007/164_2017_8

Download citation

Publish with us

Policies and ethics