Skip to main content

Sigma-1 (σ1) Receptor in Memory and Neurodegenerative Diseases

  • Chapter
  • First Online:
Sigma Proteins: Evolution of the Concept of Sigma Receptors

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 244))

Abstract

The sigma-1 (σ1) receptor has been associated with regulation of intracellular Ca2+ homeostasis, several cellular signaling pathways, and inter-organelle communication, in part through its chaperone activity. In vivo, agonists of the σ1 receptor enhance brain plasticity, with particularly well-described impact on learning and memory. Under pathological conditions, σ1 receptor agonists can induce cytoprotective responses. These protective responses comprise various complementary pathways that appear to be differentially engaged according to pathological mechanism. Recent studies have highlighted the efficacy of drugs that act through the σ1 receptor to mitigate symptoms associated with neurodegenerative disorders with distinct mechanisms of pathogenesis. Here, we will review genetic and pharmacological evidence of σ1 receptor engagement in learning and memory disorders, cognitive impairment, and neurodegenerative diseases, including Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis, multiple sclerosis, and Huntington’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aigner TG (1995) Pharmacology of memory: cholinergic-glutamatergic interactions. Curr Opin Neurobiol 5(2):155–160

    Article  CAS  PubMed  Google Scholar 

  • Alonso G, Phan V, Guillemain I, Saunier M, Legrand A, Anoal M, Maurice T (2000) Immunocytochemical localization of the sigma(1) receptor in the adult rat central nervous system. Neuroscience 97(1):155–170

    Article  CAS  PubMed  Google Scholar 

  • Al-Saif A, Al-Mohanna F, Bohlega S (2011) A mutation in sigma-1 receptor causes juvenile amyotrophic lateral sclerosis. Ann Neurol 70(6):913–919. doi:10.1002/ana.22534

    Article  CAS  PubMed  Google Scholar 

  • Aly HF, Metwally FM, Ahmed HH (2011) Neuroprotective effects of dehydroepiandrosterone (DHEA) in rat model of Alzheimer's disease. Acta Biochim Pol 58(4):513–520

    CAS  PubMed  Google Scholar 

  • Antonini V, Marrazzo A, Kleiner G, Coradazzi M, Ronsisvalle S, Prezzavento O, Ronsisvalle G, Leanza G (2011) Anti-amnesic and neuroprotective actions of the sigma-1 receptor agonist (−)-MR22 in rats with selective cholinergic lesion and amyloid infusion. J Alzheimers Dis 24(3):569–586. doi:10.3233/jad-2011-101794

    CAS  PubMed  Google Scholar 

  • Behensky AA, Yasny IE, Shuster AM, Seredenin SB, Petrov AV, Cuevas J (2013) Stimulation of sigma receptors with afobazole blocks activation of microglia and reduces toxicity caused by amyloid-beta25-35. J Pharmacol Exp Ther 347(2):458–467. doi:10.1124/jpet.113.208348

    Article  CAS  PubMed  Google Scholar 

  • Braak H, Braak E (2000) Pathoanatomy of Parkinson’s disease. J Neurol 247(Suppl 2):Ii3–I10. doi:10.1007/pl00007758

    PubMed  Google Scholar 

  • Braak H, Ghebremedhin E, Rub U, Bratzke H, Del Tredici K (2004) Stages in the development of Parkinson’s disease-related pathology. Cell Tissue Res 318(1):121–134. doi:10.1007/s00441-004-0956-9

    Article  PubMed  Google Scholar 

  • Brailoiu GC, Deliu E, Console-Bram LM, Soboloff J, Abood ME, Unterwald EM, Brailoiu E (2016) Cocaine inhibits store-operated Ca2+ entry in brain microvascular endothelial cells: critical role for sigma-1 receptors. Biochem J 473(1):1–5. doi:10.1042/bj20150934

    Article  CAS  PubMed  Google Scholar 

  • Cao J, Viholainen JI, Dart C, Warwick HK, Leyland ML, Courtney MJ (2005) The PSD95-nNOS interface: a target for inhibition of excitotoxic p38 stress-activated protein kinase activation and cell death. J Cell Biol 168(1):117–126. doi:10.1083/jcb.200407024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheah BC, Vucic S, Krishnan AV, Kiernan MC (2010) Riluzole, neuroprotection and amyotrophic lateral sclerosis. Curr Med Chem 17(18):1199–1942

    Article  Google Scholar 

  • Chen L, Miyamoto Y, Furuya K, Dai XN, Mori N, Sokabe M (2006) Chronic DHEAS administration facilitates hippocampal long-term potentiation via an amplification of Src-dependent NMDA receptor signaling. Neuropharmacology 51(3):659–670. doi:10.1016/j.neuropharm.2006.05.011

    Article  CAS  PubMed  Google Scholar 

  • Chevallier N, Keller E, Maurice T (2011) Behavioural phenotyping of knockout mice for the sigma-1 (sigma(1)) chaperone protein revealed gender-related anxiety, depressive-like and memory alterations. J Psychopharmacol 25(7):960–975. doi:10.1177/0269881111400648

    Article  CAS  PubMed  Google Scholar 

  • Compston A, Coles A (2008) Multiple sclerosis. Lancet 372(9648):1502–1517. doi:10.1016/s0140-6736(08)61620-7

    Article  CAS  PubMed  Google Scholar 

  • de Lau LM, Breteler MM (2006) Epidemiology of Parkinson’s disease. Lancet Neurol 5(6):525–535. doi:10.1016/s1474-4422(06)70471-9

    Article  PubMed  Google Scholar 

  • de Rijk MC, Tzourio C, Breteler MM, Dartigues JF, Amaducci L, Lopez-Pousa S, Manubens-Bertran JM, Alperovitch A, Rocca WA (1997) Prevalence of parkinsonism and Parkinson’s disease in Europe: the EUROPARKINSON collaborative study. European Community Concerted Action on the epidemiology of Parkinson’s disease. J Neurol Neurosurg Psychiatry 62(1):10–15

    Article  PubMed  PubMed Central  Google Scholar 

  • Dorsey ER, Beck CA, Darwin K, Nichols P, Brocht AF, Biglan KM, Shoulson I (2013) Natural history of Huntington disease. JAMA Neurol 70(12):1520–1530. doi:10.1001/jamaneurol.2013.4408

    PubMed  Google Scholar 

  • Espallergues J, Lapalud P, Christopoulos A, Avlani VA, Sexton PM, Vamvakides A, Maurice T (2007) Involvement of the sigma1 (sigma1) receptor in the anti-amnesic, but not antidepressant-like, effects of the aminotetrahydrofuran derivative ANAVEX1-41. Br J Pharmacol 152(2):267–279. doi:10.1038/sj.bjp.0707386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feher A, Juhasz A, Laszlo A, Kalman J Jr, Pakaski M, Kalman J, Janka Z (2012) Association between a variant of the sigma-1 receptor gene and Alzheimer's disease. Neurosci Lett 517(2):136–139. doi:10.1016/j.neulet.2012.04.046

    Article  CAS  PubMed  Google Scholar 

  • Feigin A (2011) Pridopidine in treatment of Huntington’s disease: beyond chorea? Lancet Neurol 10(12):1036–1037. doi:10.1016/s1474-4422(11)70247-2

    Article  PubMed  Google Scholar 

  • Fisher A, Bezprozvanny I, Wu L, Ryskamp DA, Bar-Ner N, Natan N, Brandeis R, Elkon H, Nahum V, Gershonov E, LaFerla FM, Medeiros R (2016) AF710B, a novel M1/sigma1 agonist with therapeutic efficacy in animal models of Alzheimer’s disease. Neurodegener Dis 16(1–2):95–110. doi:10.1159/000440864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fontanilla D, Johannessen M, Hajipour AR, Cozzi NV, Jackson MB, Ruoho AE (2009) The hallucinogen N,N-dimethyltryptamine (DMT) is an endogenous sigma-1 receptor regulator. Science 323(5916):934–937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Forbes RB, Colville S, Swingler RJ (2004) The epidemiology of amyotrophic lateral sclerosis (ALS/MND) in people aged 80 or over. Age Ageing 33(2):131–134. doi:10.1093/ageing/afh013

    Article  PubMed  Google Scholar 

  • Foskett JK, White C, Cheung KH, Mak DO (2007) Inositol trisphosphate receptor Ca2+ release channels. Physiol Rev 87(2):593–658. doi:10.1152/physrev.00035.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Francardo V, Bez F, Wieloch T, Nissbrandt H, Ruscher K, Cenci MA (2014) Pharmacological stimulation of sigma-1 receptors has neurorestorative effects in experimental parkinsonism. Brain 137(Pt 7):1998–2014. doi:10.1093/brain/awu107

    Article  PubMed  Google Scholar 

  • Freeman AS, Bunney BS (1984) The effects of phencyclidine and N-allylnormetazocine on midbrain dopamine neuronal activity. Eur J Pharmacol 104(3–4):287–293

    Article  CAS  PubMed  Google Scholar 

  • Fujimoto S, Yamamoto K, Kuba K, Morita K, Kato E (1980) Calcium localization in the sympathetic ganglion of the bullfrog and effects of caffeine. Brain Res 202(1):21–32

    Article  CAS  PubMed  Google Scholar 

  • Gil JM, Rego AC (2008) Mechanisms of neurodegeneration in Huntington's disease. Eur J Neurosci 27(11):2803–2820. doi:10.1111/j.1460-9568.2008.06310.x

    Article  PubMed  Google Scholar 

  • Gold R, Linington C, Lassmann H (2006) Understanding pathogenesis and therapy of multiple sclerosis via animal models: 70 years of merits and culprits in experimental autoimmune encephalomyelitis research. Brain 129(Pt 8):1953–1971. doi:10.1093/brain/awl075

    Article  PubMed  Google Scholar 

  • Grosskreutz J, Van Den Bosch L, Keller BU (2010) Calcium dysregulation in amyotrophic lateral sclerosis. Cell Calcium 47(2):165–174. doi:10.1016/j.ceca.2009.12.002

    Article  CAS  PubMed  Google Scholar 

  • Guzman-Lenis MS, Navarro X, Casas C (2009) Selective sigma receptor agonist 2-(4-morpholinethyl)1-phenylcyclohexanecarboxylate (PRE084) promotes neuroprotection and neurite elongation through protein kinase C (PKC) signaling on motoneurons. Neuroscience 162(1):31–38. doi:10.1016/j.neuroscience.2009.03.067

    Article  CAS  PubMed  Google Scholar 

  • Haghikia A, Hohlfeld R, Gold R, Fugger L (2013) Therapies for multiple sclerosis: translational achievements and outstanding needs. Trends Mol Med 19(5):309–319. doi:10.1016/j.molmed.2013.03.004

    Article  CAS  PubMed  Google Scholar 

  • Hanner M, Moebius FF, Flandorfer A, Knaus HG, Striessnig J, Kempner E, Glossmann H (1996) Purification, molecular cloning, and expression of the mammalian sigma1-binding site. Proc Natl Acad Sci U S A 93(15):8072–8077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hardiman O, van den Berg LH, Kiernan MC (2011) Clinical diagnosis and management of amyotrophic lateral sclerosis. Nat Rev Neurol 7(11):639–649. doi:10.1038/nrneurol.2011.153

    Article  CAS  PubMed  Google Scholar 

  • Hayashi T, Maurice T, Su TP (2000) Ca(2+) signaling via sigma(1)-receptors: novel regulatory mechanism affecting intracellular Ca(2+) concentration. J Pharmacol Exp Ther 293(3):788–798

    CAS  PubMed  Google Scholar 

  • Hayashi T, Su TP (2003) Sigma-1 receptors (sigma(1) binding sites) form raft-like microdomains and target lipid droplets on the endoplasmic reticulum: roles in endoplasmic reticulum lipid compartmentalization and export. J Pharmacol Exp Ther 306(2):718–725

    Article  CAS  PubMed  Google Scholar 

  • Hayashi T, Su TP (2004) Sigma-1 receptors at galactosylceramide-enriched lipid microdomains regulate oligodendrocyte differentiation. Proc Natl Acad Sci U S A 101(41):14949–14954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayashi T, Su TP (2005) The potential role of sigma-1 receptors in lipid transport and lipid raft reconstitution in the brain: implication for drug abuse. Life Sci 77(14):1612–1624

    Article  CAS  PubMed  Google Scholar 

  • Hayashi T, Su TP (2007) Sigma-1 receptor chaperones at the ER-mitochondrion interface regulate Ca(2+) signaling and cell survival. Cell 131(3):596–610

    Article  CAS  PubMed  Google Scholar 

  • Hayashi T, Su TP (2010) Cholesterol at the endoplasmic reticulum: roles of the sigma-1 receptor chaperone and implications thereof in human diseases. Subcell Biochem 51:381–398. doi:10.1007/978-90-481-8622-8_13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He YL, Zhang CL, Gao XF, Yao JJ, Hu CL, Mei YA (2012) Cyproheptadine enhances the I(K) of mouse cortical neurons through sigma-1 receptor-mediated intracellular signal pathway. PLoS One 7(7):e41303. doi:10.1371/journal.pone.0041303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henkart M, Landis DM, Reese TS (1976) Similarity of junctions between plasma membranes and endoplasmic reticulum in muscle and neurons. J Cell Biol 70(2 pt 1):338–347

    Article  CAS  PubMed  Google Scholar 

  • Hohlfeld R, Dornmair K, Meinl E, Wekerle H (2016) The search for the target antigens of multiple sclerosis, part 2: CD8+ T cells, B cells, and antibodies in the focus of reverse-translational research. Lancet Neurol 15(3):317–331. doi:10.1016/s1474-4422(15)00313-0

    Article  CAS  PubMed  Google Scholar 

  • Hong J, Sha S, Zhou L, Wang C, Yin J, Chen L (2015) Sigma-1 receptor deficiency reduces MPTP-induced parkinsonism and death of dopaminergic neurons. Cell Death Dis 6:e1832. doi:10.1038/cddis.2015.194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horan B, Gifford AN, Matsuno K, Mita S, Ashby CR Jr (2002) Effect of SA4503 on the electrically evoked release of (3)H-acetylcholine from striatal and hippocampal rat brain slices. Synapse 46(1):1–3. doi:10.1002/syn.10107

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, Zheng L, Halliday G, Dobson-Stone C, Wang Y, Tang HD, Cao L, Deng YL, Wang G, Zhang YM, Wang JH, Hallupp M, Kwok J, Chen SD (2011) Genetic polymorphisms in sigma-1 receptor and apolipoprotein E interact to influence the severity of Alzheimer’s disease. Curr Alzheimer Res 8(7):765–770

    Article  CAS  PubMed  Google Scholar 

  • Huntington G (1872) On chorea. Med Surg Reporter 26:317–321

    Google Scholar 

  • Hyrskyluoto A, Pulli I, Tornqvist K, Ho TH, Korhonen L, Lindholm D (2013) Sigma-1 receptor agonist PRE084 is protective against mutant huntingtin-induced cell degeneration: involvement of calpastatin and the NF-kappaB pathway. Cell Death Dis 4:e646. doi:10.1038/cddis.2013.170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jansen KL, Faull RL, Storey P, Leslie RA (1993) Loss of sigma binding sites in the CA1 area of the anterior hippocampus in Alzheimer’s disease correlates with CA1 pyramidal cell loss. Brain Res 623(2):299–302

    Article  CAS  PubMed  Google Scholar 

  • Junien JL, Roman FJ, Brunelle G, Pascaud X (1991) JO1784, a novel sigma ligand, potentiates [3H]acetylcholine release from rat hippocampal slices. Eur J Pharmacol 200(2–3):343–345

    Article  CAS  PubMed  Google Scholar 

  • Kim HJ, Kwon MJ, Choi WJ, Oh KW, Oh SI, Ki CS, Kim SH (2014) Mutations in UBQLN2 and SIGMAR1 genes are rare in Korean patients with amyotrophic lateral sclerosis. Neurobiol Aging 35(8):e1957–e1958. doi:10.1016/j.neurobiolaging.2014.03.001

    Article  CAS  Google Scholar 

  • Kishi T, Yoshimura R, Okochi T, Fukuo Y, Kitajima T, Okumura T, Tsunoka T, Kawashima K, Yamanouchi Y, Kinoshita Y, Umene-Nakano W, Naitoh H, Nakamura J, Ozaki N, Iwata N (2010) Association analysis of SIGMAR1 with major depressive disorder and SSRI response. Neuropharmacology 58(7):1168–1173. doi:10.1016/j.neuropharm.2010.02.013

    Article  CAS  PubMed  Google Scholar 

  • Kourrich S, Hayashi T, Chuang JY, Tsai SY, Su TP, Bonci A (2013) Dynamic interaction between sigma-1 receptor and Kv1.2 shapes neuronal and behavioral responses to cocaine. Cell 152(1–2):236–247. doi:10.1016/j.cell.2012.12.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lahmy V, Meunier J, Malmstrom S, Naert G, Givalois L, Kim SH, Villard V, Vamvakides A, Maurice T (2013) Blockade of Tau hyperphosphorylation and Abeta(1)(−)(4)(2) generation by the aminotetrahydrofuran derivative ANAVEX2-73, a mixed muscarinic and sigma(1) receptor agonist, in a nontransgenic mouse model of Alzheimer’s disease. Neuropsychopharmacology 38(9):1706–1723. doi:10.1038/npp.2013.70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lande R, Gafa V, Serafini B, Giacomini E, Visconti A, Remoli ME, Severa M, Parmentier M, Ristori G, Salvetti M, Aloisi F, Coccia EM (2008) Plasmacytoid dendritic cells in multiple sclerosis: intracerebral recruitment and impaired maturation in response to interferon-beta. J Neuropathol Exp Neurol 67(5):388–401. doi:10.1097/NEN.0b013e31816fc975

    Article  CAS  PubMed  Google Scholar 

  • Largent BL, Gundlach AL, Snyder SH (1986a) Pharmacological and autoradiographic discrimination of sigma and phencyclidine receptor binding sites in brain with (+)-[3H]SKF 10,047, (+)-[3H]-3-[3-hydroxyphenyl]-N-(1-propyl)piperidine and [3H]-1-[1-(2-thienyl)cyclohexyl]piperidine. J Pharmacol Exp Ther 238(2):739–748

    CAS  PubMed  Google Scholar 

  • Largent BL, Gundlach AL, Snyder SH (1986b) Sigma receptors on NCB-20 hybrid neurotumor cells labeled with (+)[3H]SKF 10,047 and (+)[3H]3-PPP. Eur J Pharmacol 124(1–2):183–187

    Article  CAS  PubMed  Google Scholar 

  • Li BS, Ma W, Zhang L, Barker JL, Stenger DA, Pant HC (2001) Activation of phosphatidylinositol-3 kinase (PI-3K) and extracellular regulated kinases (Erk1/2) is involved in muscarinic receptor-mediated DNA synthesis in neural progenitor cells. J Neurosci 21(5):1569–1579

    CAS  PubMed  Google Scholar 

  • Li Z, Zhou R, Cui S, Xie G, Cai W, Sokabe M, Chen L (2006) Dehydroepiandrosterone sulfate prevents ischemia-induced impairment of long-term potentiation in rat hippocampal CA1 by up-regulating tyrosine phosphorylation of NMDA receptor. Neuropharmacology 51(5):958–966. doi:10.1016/j.neuropharm.2006.06.007

    Article  CAS  PubMed  Google Scholar 

  • Lockhart BP, Soulard P, Benicourt C, Privat A, Junien JL (1995) Distinct neuroprotective profiles for sigma ligands against N-methyl-D-aspartate (NMDA), and hypoxia-mediated neurotoxicity in neuronal culture toxicity studies. Brain Res 675(1–2):110–120

    Article  CAS  PubMed  Google Scholar 

  • Logroscino G, Traynor BJ, Hardiman O, Chio A, Mitchell D, Swingler RJ, Millul A, Benn E, Beghi E (2010) Incidence of amyotrophic lateral sclerosis in Europe. J Neurol Neurosurg Psychiatry 81(4):385–390. doi:10.1136/jnnp.2009.183525

    Article  PubMed  Google Scholar 

  • Luty AA, Kwok JB, Dobson-Stone C, Loy CT, Coupland KG, Karlstrom H, Sobow T, Tchorzewska J, Maruszak A, Barcikowska M, Panegyres PK, Zekanowski C, Brooks WS, Williams KL, Blair IP, Mather KA, Sachdev PS, Halliday GM, Schofield PR (2010) Sigma nonopioid intracellular receptor 1 mutations cause frontotemporal lobar degeneration-motor neuron disease. Ann Neurol 68(5):639–649. doi:10.1002/ana.22274

    Article  CAS  PubMed  Google Scholar 

  • Malik M, Rangel-Barajas C, Sumien N, Su C, Singh M, Chen Z, Huang RQ, Meunier J, Maurice T, Mach RH, Luedtke RR (2015) The effects of sigma (sigma1) receptor-selective ligands on muscarinic receptor antagonist-induced cognitive deficits in mice. Br J Pharmacol 172(10):2519–2531. doi:10.1111/bph.13076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mancuso R, Olivan S, Rando A, Casas C, Osta R, Navarro X (2012) Sigma-1R agonist improves motor function and motoneuron survival in ALS mice. Neurotherapeutics 9(4):814–826. doi:10.1007/s13311-012-0140-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marrazzo A, Caraci F, Salinaro ET, Su TP, Copani A, Ronsisvalle G (2005) Neuroprotective effects of sigma-1 receptor agonists against beta-amyloid-induced toxicity. Neuroreport 16(11):1223–1226

    Article  CAS  PubMed  Google Scholar 

  • Martin WR, Eades CG, Thompson JA, Huppler RE, Gilbert PE (1976) The effects of morphine- and nalorphine- like drugs in the nondependent and morphine-dependent chronic spinal dog. J Pharmacol Exp Ther 197(3):517–532

    CAS  PubMed  Google Scholar 

  • Martina M, Turcotte ME, Halman S, Bergeron R (2007) The sigma-1 receptor modulates NMDA receptor synaptic transmission and plasticity via SK channels in rat hippocampus. J Physiol 578(Pt 1):143–157

    Article  CAS  PubMed  Google Scholar 

  • Maruszak A, Safranow K, Gacia M, Gabryelewicz T, Slowik A, Styczynska M, Peplonska B, Golan MP, Zekanowski C, Barcikowska M (2007) Sigma receptor type 1 gene variation in a group of Polish patients with Alzheimer's disease and mild cognitive impairment. Dement Geriatr Cogn Disord 23(6):432–438. doi:10.1159/000101990

    Article  CAS  PubMed  Google Scholar 

  • Matsuno K, Matsunaga K, Senda T, Mita S (1993) Increase in extracellular acetylcholine level by sigma ligands in rat frontal cortex. J Pharmacol Exp Ther 265(2):851–859

    CAS  PubMed  Google Scholar 

  • Matsuno K, Senda T, Kobayashi T, Mita S (1995) Involvement of sigma 1 receptor in (+)-N-allylnormetazocine-stimulated hippocampal cholinergic functions in rats. Brain Res 690(2):200–206

    Article  CAS  PubMed  Google Scholar 

  • Maurice T (2016) Protection by sigma-1 receptor agonists is synergic with donepezil, but not with memantine, in a mouse model of amyloid-induced memory impairments. Behav Brain Res 296:270–278. doi:10.1016/j.bbr.2015.09.020

    Article  CAS  PubMed  Google Scholar 

  • Maurice T, Lahmy V, Strehaiano M, Dekeuwer A, Naert G, Desrumeaux C, Villard V, Chevallier N (2015) Genetic invalidation or pharmacological activation of the sigma-1 chaperone protein modulates toxicity in the transgenic hAPPSwe mouse line. French Soc Neurosci Abstr

    Google Scholar 

  • Maurice T, Martin-Fardon R, Romieu P, Matsumoto RR (2002) Sigma(1) (sigma(1)) receptor antagonists represent a new strategy against cocaine addiction and toxicity. Neurosci Biobehav Rev 26(4):499–527

    Article  CAS  PubMed  Google Scholar 

  • Maurice T, Roman FJ, Su TP, Privat A (1996) Beneficial effects of sigma agonists on the age-related learning impairment in the senescence-accelerated mouse (SAM). Brain Res 733(2):219–230

    Article  CAS  PubMed  Google Scholar 

  • Maurice T, Romieu P (2004) Involvement of the sigma1 receptor in the appetitive effects of cocaine. Pharmacopsychiatry 37(Suppl 3):S198–S207. doi:10.1055/s-2004-832678

    Article  CAS  PubMed  Google Scholar 

  • Maurice T, Su TP (2009) The pharmacology of sigma-1 receptors. Pharmacol Ther 124(2):195–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maurice T, Su TP, Privat A (1998) Sigma1 (sigma 1) receptor agonists and neurosteroids attenuate B25-35-amyloid peptide-induced amnesia in mice through a common mechanism. Neuroscience 83(2):413–428

    Article  CAS  PubMed  Google Scholar 

  • Maurice T, Villard V, Duhr F, Chevallier N (2010) Amyloid toxicity induced by in vivo injection of Aβ2535 oligomeric preparations is enhanced after pharmacologic or genetic invalidation of the sigma-1 chaperone protein. Soc Neurosci Abstr Program No 2477 San Diego, CA

    Google Scholar 

  • Mavlyutov TA, Epstein ML, Andersen KA, Ziskind-Conhaim L, Ruoho AE (2010) The sigma-1 receptor is enriched in postsynaptic sites of C-terminals in mouse motoneurons. An anatomical and behavioral study. Neuroscience 167(2):247–255. doi:10.1016/j.neuroscience.2010.02.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mavlyutov TA, Epstein ML, Verbny YI, Huerta MS, Zaitoun I, Ziskind-Conhaim L, Ruoho AE (2013) Lack of sigma-1 receptor exacerbates ALS progression in mice. Neuroscience 240:129–134. doi:10.1016/j.neuroscience.2013.02.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mavlyutov TA, Nickells RW, Guo LW (2011) Accelerated retinal ganglion cell death in mice deficient in the sigma-1 receptor. Mol Vis 17:1034–1043

    CAS  PubMed  PubMed Central  Google Scholar 

  • McCann DJ, Su TP (1991) Solubilization and characterization of haloperidol-sensitive (+)-[3H]SKF-10,047 binding sites (sigma sites) from rat liver membranes. J Pharmacol Exp Ther 257(2):547–554

    CAS  PubMed  Google Scholar 

  • Meltzer HY, Rajagopal L, Huang M, Oyamada Y, Kwon S, Horiguchi M (2013) Translating the N-methyl-D-aspartate receptor antagonist model of schizophrenia to treatments for cognitive impairment in schizophrenia. Int J Neuropsychopharmacol 16(10):2181–2194. doi:10.1017/s1461145713000928

    Article  CAS  PubMed  Google Scholar 

  • Meunier J, Hayashi T (2010) Sigma-1 receptors regulate Bcl-2 expression by reactive oxygen species-dependent transcriptional regulation of nuclear factor kappaB. J Pharmacol Exp Ther 332(2):388–397. doi:10.1124/jpet.109.160960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meunier J, Ieni J, Maurice T (2006) The anti-amnesic and neuroprotective effects of donepezil against amyloid beta25-35 peptide-induced toxicity in mice involve an interaction with the sigma1 receptor. Br J Pharmacol 149(8):998–1012. doi:10.1038/sj.bjp.0706927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miki Y, Tanji K, Mori F, Wakabayashi K (2015) Sigma-1 receptor is involved in degradation of intranuclear inclusions in a cellular model of Huntington’s disease. Neurobiol Dis 74:25–31. doi:10.1016/j.nbd.2014.11.005

    Article  CAS  PubMed  Google Scholar 

  • Mishina M, Ishiwata K, Ishii K, Kitamura S, Kimura Y, Kawamura K, Oda K, Sasaki T, Sakayori O, Hamamoto M, Kobayashi S, Katayama Y (2005) Function of sigma1 receptors in Parkinson’s disease. Acta Neurol Scand 112(2):103–107. doi:10.1111/j.1600-0404.2005.00432.x

    Article  CAS  PubMed  Google Scholar 

  • Mishina M, Ohyama M, Ishii K, Kitamura S, Kimura Y, Oda K, Kawamura K, Sasaki T, Kobayashi S, Katayama Y, Ishiwata K (2008) Low density of sigma1 receptors in early Alzheimer’s disease. Ann Nucl Med 22(3):151–156. doi:10.1007/s12149-007-0094-z

    Article  CAS  PubMed  Google Scholar 

  • Miyatake R, Furukawa A, Matsushita S, Higuchi S, Suwaki H (2004) Functional polymorphisms in the sigma1 receptor gene associated with alcoholism. Biol Psychiatry 55(1):85–90

    Article  CAS  PubMed  Google Scholar 

  • Monnet FP, Blier P, Debonnel G, de Montigny C (1992a) Modulation by sigma ligands of N-methyl-D-aspartate-induced [3H]noradrenaline release in the rat hippocampus: G-protein dependency. Naunyn Schmiedebergs Arch Pharmacol 346(1):32–39

    Article  CAS  PubMed  Google Scholar 

  • Monnet FP, Debonnel G, de Montigny C (1992b) In vivo electrophysiological evidence for a selective modulation of N-methyl-D-aspartate-induced neuronal activation in rat CA3 dorsal hippocampus by sigma ligands. J Pharmacol Exp Ther 261(1):123–130

    CAS  PubMed  Google Scholar 

  • Monnet FP, Debonnel G, Junien JL, De Montigny C (1990) N-methyl-D-aspartate-induced neuronal activation is selectively modulated by sigma receptors. Eur J Pharmacol 179(3):441–445

    Article  CAS  PubMed  Google Scholar 

  • Monnet FP, Mahe V, Robel P, Baulieu EE (1995) Neurosteroids, via sigma receptors, modulate the [3H]norepinephrine release evoked by N-methyl-D-aspartate in the rat hippocampus. Proc Natl Acad Sci U S A 92(9):3774–3778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mori T, Hayashi T, Su TP (2012) Compromising sigma-1 receptors at the endoplasmic reticulum render cytotoxicity to physiologically relevant concentrations of dopamine in a nuclear factor-kappaB/Bcl-2-dependent mechanism: potential relevance to Parkinson’s disease. J Pharmacol Exp Ther 341(3):663–671. doi:10.1124/jpet.111.190868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mulder AH, Draper R, Sminia P, Schoffelmeer AN, Stoof JC (1985) Agonist and antagonist effects of 3-PPP enantiomers on functional dopamine autoreceptors and postsynaptic dopamine receptors in vitro. Eur J Pharmacol 107(3):291–297

    Article  CAS  PubMed  Google Scholar 

  • Natsvlishvili N, Goguadze N, Zhuravliova E, Mikeladze D (2015) Sigma-1 receptor directly interacts with Rac1-GTPase in the brain mitochondria. BMC Biochem 16:11. doi:10.1186/s12858-015-0040-y

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Navarro G, Moreno E, Aymerich M, Marcellino D, McCormick PJ, Mallol J, Cortes A, Casado V, Canela EI, Ortiz J, Fuxe K, Lluis C, Ferre S, Franco R (2010) Direct involvement of sigma-1 receptors in the dopamine D1 receptor-mediated effects of cocaine. Proc Natl Acad Sci U S A 107(43):18676–18681. doi:10.1073/pnas.1008911107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Navarro G, Moreno E, Bonaventura J, Brugarolas M, Farre D, Aguinaga D, Mallol J, Cortes A, Casado V, Lluis C, Ferre S, Franco R, Canela E, McCormick PJ (2013) Cocaine inhibits dopamine D2 receptor signaling via sigma-1-D2 receptor heteromers. PLoS One 8(4):e61245. doi:10.1371/journal.pone.0061245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohi K, Hashimoto R, Yasuda Y, Fukumoto M, Yamamori H, Umeda-Yano S, Kamino K, Ikezawa K, Azechi M, Iwase M, Kazui H, Kasai K, Takeda M (2011) The SIGMAR1 gene is associated with a risk of schizophrenia and activation of the prefrontal cortex. Prog Neuropsychopharmacol Biol Psychiatry 35(5):1309–1315. doi:10.1016/j.pnpbp.2011.04.008

    Article  CAS  PubMed  Google Scholar 

  • Ohmori O, Shinkai T, Suzuki T, Okano C, Kojima H, Terao T, Nakamura J (2000) Polymorphisms of the sigma(1) receptor gene in schizophrenia: an association study. Am J Med Genet 96(1):118–122

    Article  CAS  PubMed  Google Scholar 

  • Ono Y, Tanaka H, Takata M, Nagahara Y, Noda Y, Tsuruma K, Shimazawa M, Hozumi I, Hara H (2014) SA4503, a sigma-1 receptor agonist, suppresses motor neuron damage in in vitro and in vivo amyotrophic lateral sclerosis models. Neurosci Lett 559:174–178. doi:10.1016/j.neulet.2013.12.005

    Article  CAS  PubMed  Google Scholar 

  • Orr HT, Chung MY, Banfi S, Kwiatkowski TJ Jr, Servadio A, Beaudet AL, McCall AE, Duvick LA, Ranum LP, Zoghbi HY (1993) Expansion of an unstable trinucleotide CAG repeat in spinocerebellar ataxia type 1. Nat Genet 4(3):221–226. doi:10.1038/ng0793-221

    Article  CAS  PubMed  Google Scholar 

  • Oxombre B, Lee-Chang C, Duhamel A, Toussaint M, Giroux M, Donnier-Marechal M, Carato P, Lefranc D, Zephir H, Prin L, Melnyk P, Vermersch P (2015) High-affinity sigma1 protein agonist reduces clinical and pathological signs of experimental autoimmune encephalomyelitis. Br J Pharmacol 172(7):1769–1782. doi:10.1111/bph.13037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pabba M, Wong AY, Ahlskog N, Hristova E, Biscaro D, Nassrallah W, Ngsee JK, Snyder M, Beique JC, Bergeron R (2014) NMDA receptors are upregulated and trafficked to the plasma membrane after sigma-1 receptor activation in the rat hippocampus. J Neurosci 34(34):11325–11338. doi:10.1523/jneurosci.0458-14.2014

    Article  PubMed  CAS  Google Scholar 

  • Pambo-Pambo A, Durand J, Gueritaud JP (2009) Early excitability changes in lumbar motoneurons of transgenic SOD1G85R and SOD1G(93A-low) mice. J Neurophysiol 102(6):3627–3642. doi:10.1152/jn.00482.2009

    Article  CAS  PubMed  Google Scholar 

  • Pettersson F, Ponten H, Waters N, Waters S, Sonesson C (2010) Synthesis and evaluation of a set of 4-phenylpiperidines and 4-phenylpiperazines as D2 receptor ligands and the discovery of the dopaminergic stabilizer 4-[3-(methylsulfonyl)phenyl]-1-propylpiperidine (huntexil, pridopidine, ACR16). J Med Chem 53(6):2510–2520. doi:10.1021/jm901689v

    Article  CAS  PubMed  Google Scholar 

  • Peviani M, Salvaneschi E, Bontempi L, Petese A, Manzo A, Rossi D, Salmona M, Collina S, Bigini P, Curti D (2014) Neuroprotective effects of the sigma-1 receptor (S1R) agonist PRE-084, in a mouse model of motor neuron disease not linked to SOD1 mutation. Neurobiol Dis 62:218–232. doi:10.1016/j.nbd.2013.10.010

    Article  CAS  PubMed  Google Scholar 

  • Pullen AH, Athanasiou D (2009) Increase in presynaptic territory of C-terminals on lumbar motoneurons of G93A SOD1 mice during disease progression. Eur J Neurosci 29(3):551–561. doi:10.1111/j.1460-9568.2008.06602.x

    Article  CAS  PubMed  Google Scholar 

  • Reijonen S, Kukkonen JP, Hyrskyluoto A, Kivinen J, Kairisalo M, Takei N, Lindholm D, Korhonen L (2010) Downregulation of NF-kappaB signaling by mutant huntingtin proteins induces oxidative stress and cell death. Cell Mol Life Sci 67(11):1929–1941. doi:10.1007/s00018-010-0305-y

    Article  CAS  PubMed  Google Scholar 

  • Reijonen S, Putkonen N, Norremolle A, Lindholm D, Korhonen L (2008) Inhibition of endoplasmic reticulum stress counteracts neuronal cell death and protein aggregation caused by N-terminal mutant huntingtin proteins. Exp Cell Res 314(5):950–960. doi:10.1016/j.yexcr.2007.12.025

    Article  CAS  PubMed  Google Scholar 

  • Reilmann R (2013) The pridopidine paradox in Huntington’s disease. Mov Disord 28(10):1321–1324. doi:10.1002/mds.25559

    Article  CAS  PubMed  Google Scholar 

  • Rizzuto R, Duchen MR, Pozzan T (2004) Flirting in little space: the ER/mitochondria Ca2+ liaison. Sci STKE 2004(215):re1. doi:10.1126/stke.2152004re1

    PubMed  Google Scholar 

  • Robson MJ, Noorbakhsh B, Seminerio MJ, Matsumoto RR (2012) Sigma-1 receptors: potential targets for the treatment of substance abuse. Curr Pharm Des 18(7):902–919

    Article  CAS  PubMed  Google Scholar 

  • Sahlholm K, Arhem P, Fuxe K, Marcellino D (2013) The dopamine stabilizers ACR16 and (−)-OSU6162 display nanomolar affinities at the sigma-1 receptor. Mol Psychiatry 18(1):12–14. doi:10.1038/mp.2012.3

    Article  CAS  PubMed  Google Scholar 

  • Sahlholm K, Sijbesma JW, Maas B, Kwizera C, Marcellino D, Ramakrishnan NK, Dierckx RA, Elsinga PH, van Waarde A (2015) Pridopidine selectively occupies sigma-1 rather than dopamine D2 receptors at behaviorally active doses. Psychopharmacology (Berl) 232(18):3443–3453. doi:10.1007/s00213-015-3997-8

    Article  CAS  Google Scholar 

  • Satoh F, Miyatake R, Furukawa A, Suwaki H (2004) Lack of association between sigma receptor gene variants and schizophrenia. Psychiatry Clin Neurosci 58(4):359–363. doi:10.1111/j.1440-1819.2004.01268.x

    Article  CAS  PubMed  Google Scholar 

  • Schiess AR, Partridge LD (2005) Pregnenolone sulfate acts through a G-protein-coupled sigma1-like receptor to enhance short term facilitation in adult hippocampal neurons. Eur J Pharmacol 518(1):22–29. doi:10.1016/j.ejphar.2005.06.007

    Article  CAS  PubMed  Google Scholar 

  • Schmidt HR, Zheng S, Gurpinar E, Koehl A, Manglik A, Kruse AC (2016) Crystal structure of the human sigma receptor. Nature. doi:10.1038/nature17391

    Google Scholar 

  • Selkoe DJ (2004) Cell biology of protein misfolding: the examples of Alzheimer’s and Parkinson’s diseases. Nat Cell Biol 6(11):1054–1061. doi:10.1038/ncb1104-1054

    Article  CAS  PubMed  Google Scholar 

  • Serafini B, Rosicarelli B, Magliozzi R, Stigliano E, Capello E, Mancardi GL, Aloisi F (2006) Dendritic cells in multiple sclerosis lesions: maturation stage, myelin uptake, and interaction with proliferating T cells. J Neuropathol Exp Neurol 65(2):124–141. doi:10.1097/01.jnen.0000199572.96472.1c

    Article  CAS  PubMed  Google Scholar 

  • Snyder MA, McCann K, Lalande MJ, Thivierge JP, Bergeron R (2016) Sigma receptor type 1 knockout mice show a mild deficit in plasticity but no significant change in synaptic transmission in the CA1 region of the hippocampus. J Neurochem 138(5):700–709. doi:10.1111/jnc.13695

    Article  CAS  PubMed  Google Scholar 

  • Soriani O, Foll FL, Roman F, Monnet FP, Vaudry H, Cazin L (1999) A-current down-modulated by sigma receptor in frog pituitary melanotrope cells through a G protein-dependent pathway. J Pharmacol Exp Ther 289(1):321–328

    CAS  PubMed  Google Scholar 

  • Squitieri F, Di Pardo A, Favellato M, Amico E, Maglione V, Frati L (2015) Pridopidine, a dopamine stabilizer, improves motor performance and shows neuroprotective effects in Huntington disease R6/2 mouse model. J Cell Mol Med 19(11):2540–2548. doi:10.1111/jcmm.12604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steinman L, Zamvil SS (2005) Virtues and pitfalls of EAE for the development of therapies for multiple sclerosis. Trends Immunol 26(11):565–571. doi:10.1016/j.it.2005.08.014

    Article  CAS  PubMed  Google Scholar 

  • Su TP, London ED, Jaffe JH (1988) Steroid binding at sigma receptors suggests a link between endocrine, nervous, and immune systems. Science 240(4849):219–221

    Article  CAS  PubMed  Google Scholar 

  • Su TP, Su TC, Nakamura Y, Tsai SY (2016) The sigma-1 receptor as a pluripotent modulator in living systems. Trends Pharmacol Sci 37(4):262–278. doi:10.1016/j.tips.2016.01.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sunico CR, Dominguez G, Garcia-Verdugo JM, Osta R, Montero F, Moreno-Lopez B (2011) Reduction in the motoneuron inhibitory/excitatory synaptic ratio in an early-symptomatic mouse model of amyotrophic lateral sclerosis. Brain Pathol 21(1):1–15. doi:10.1111/j.1750-3639.2010.00417.x

    Article  CAS  PubMed  Google Scholar 

  • Sveinbjornsdottir S (2016) The clinical symptoms of Parkinson’s disease. J Neurochem 139(Suppl 1):318–324. doi:10.1111/jnc.13691

    Article  CAS  PubMed  Google Scholar 

  • Takizawa R, Hashimoto K, Tochigi M, Kawakubo Y, Marumo K, Sasaki T, Fukuda M, Kasai K (2009) Association between sigma-1 receptor gene polymorphism and prefrontal hemodynamic response induced by cognitive activation in schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 33(3):491–498. doi:10.1016/j.pnpbp.2009.01.014

    Article  CAS  PubMed  Google Scholar 

  • Texido L, Hernandez S, Martin-Satue M, Povedano M, Casanovas A, Esquerda J, Marsal J, Solsona C (2011) Sera from amyotrophic lateral sclerosis patients induce the non-canonical activation of NMDA receptors “in vitro”. Neurochem Int 59(6):954–964. doi:10.1016/j.neuint.2011.07.006

    Article  CAS  PubMed  Google Scholar 

  • Tsai SY, Hayashi T, Harvey BK, Wang Y, Wu WW, Shen RF, Zhang Y, Becker KG, Hoffer BJ, Su TP (2009) Sigma-1 receptors regulate hippocampal dendritic spine formation via a free radical-sensitive mechanism involving Rac1xGTP pathway. Proc Natl Acad Sci U S A 106(52):22468–22473. doi:10.1073/pnas.0909089106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uchida N, Ujike H, Nakata K, Takaki M, Nomura A, Katsu T, Tanaka Y, Imamura T, Sakai A, Kuroda S (2003) No association between the sigma receptor type 1 gene and schizophrenia: results of analysis and meta-analysis of case-control studies. BMC Psychiatry 3:13. doi:10.1186/1471-244x-3-13

    Article  PubMed  PubMed Central  Google Scholar 

  • Uchida N, Ujike H, Tanaka Y, Sakai A, Yamamoto M, Fujisawa Y, Kanzaki A, Kuroda S (2005) A variant of the sigma receptor type-1 gene is a protective factor for Alzheimer disease. Am J Geriatr Psychiatry 13(12):1062–1066. doi:10.1176/appi.ajgp.13.12.1062

    Article  PubMed  Google Scholar 

  • Van Den Bosch L, Van Damme P, Bogaert E, Robberecht W (2006) The role of excitotoxicity in the pathogenesis of amyotrophic lateral sclerosis. Biochim Biophys Acta 1762(11–12):1068–1082. doi:10.1016/j.bbadis.2006.05.002

    Article  CAS  Google Scholar 

  • Villard V, Espallergues J, Keller E, Alkam T, Nitta A, Yamada K, Nabeshima T, Vamvakides A, Maurice T (2009) Antiamnesic and neuroprotective effects of the aminotetrahydrofuran derivative ANAVEX1-41 against amyloid beta(25-35)-induced toxicity in mice. Neuropsychopharmacology 34(6):1552–1566. doi:10.1038/npp.2008.212

    Article  CAS  PubMed  Google Scholar 

  • Villard V, Espallergues J, Keller E, Vamvakides A, Maurice T (2011) Anti-amnesic and neuroprotective potentials of the mixed muscarinic receptor/sigma 1 (sigma1) ligand ANAVEX2-73, a novel aminotetrahydrofuran derivative. J Psychopharmacol 25(8):1101–1117. doi:10.1177/0269881110379286

    Article  CAS  PubMed  Google Scholar 

  • Wachtel SR, White FJ (1988) Electrophysiological effects of BMY 14802, a new potential antipsychotic drug, on midbrain dopamine neurons in the rat: acute and chronic studies. J Pharmacol Exp Ther 244(1):410–416

    CAS  PubMed  Google Scholar 

  • Wang HH, Chien JW, Chou YC, Liao JF, Chen CF (2003) Anti-amnesic effect of dimemorfan in mice. Br J Pharmacol 138(5):941–949. doi:10.1038/sj.bjp.0705117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yadid G, Sudai E, Maayan R, Gispan I, Weizman A (2010) The role of dehydroepiandrosterone (DHEA) in drug-seeking behavior. Neurosci Biobehav Rev 35(2):303–314. doi:10.1016/j.neubiorev.2010.03.003

    Article  CAS  PubMed  Google Scholar 

  • Yang R, Chen L, Wang H, Xu B, Tomimoto H, Chen L (2012) Anti-amnesic effect of neurosteroid PREGS in Abeta25-35-injected mice through sigma1 receptor- and alpha7nAChR-mediated neuroprotection. Neuropharmacology 63(6):1042–1050. doi:10.1016/j.neuropharm.2012.07.035

    Article  CAS  PubMed  Google Scholar 

  • Yang ZJ, Carter EL, Torbey MT, Martin LJ, Koehler RC (2010) Sigma receptor ligand 4-phenyl-1-(4-phenylbutyl)-piperidine modulates neuronal nitric oxide synthase/postsynaptic density-95 coupling mechanisms and protects against neonatal ischemic degeneration of striatal neurons. Exp Neurol 221(1):166–174. doi:10.1016/j.expneurol.2009.10.019

    Article  CAS  PubMed  Google Scholar 

  • Yin J, Sha S, Chen T, Wang C, Hong J, Jie P, Zhou R, Li L, Sokabe M, Chen L (2015) Sigma-1 (sigma(1)) receptor deficiency reduces beta-amyloid(25-35)-induced hippocampal neuronal cell death and cognitive deficits through suppressing phosphorylation of the NMDA receptor NR2B. Neuropharmacology 89:215–224. doi:10.1016/j.neuropharm.2014.09.027

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Cuevas J (2002) Sigma receptors inhibit high-voltage-activated calcium channels in rat sympathetic and parasympathetic neurons. J Neurophysiol 87(6):2867–2879

    CAS  PubMed  Google Scholar 

  • Zhang XJ, Liu LL, Jiang SX, Zhong YM, Yang XL (2011) Activation of the zeta receptor 1 suppresses NMDA responses in rat retinal ganglion cells. Neuroscience 177:12–22. doi:10.1016/j.neuroscience.2010.12.064

    Article  CAS  PubMed  Google Scholar 

  • Zussy C, Brureau A, Delair B, Marchal S, Keller E, Ixart G, Naert G, Meunier J, Chevallier N, Maurice T, Givalois L (2011) Time-course and regional analyses of the physiopathological changes induced after cerebral injection of an amyloid beta fragment in rats. Am J Pathol 179(1):315–334. doi:10.1016/j.ajpath.2011.03.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zvejniece L, Vavers E, Svalbe B, Vilskersts R, Domracheva I, Vorona M, Veinberg G, Misane I, Stonans I, Kalvinsh I, Dambrova M (2014) The cognition-enhancing activity of E1R, a novel positive allosteric modulator of sigma-1 receptors. Br J Pharmacol 171(3):761–771. doi:10.1111/bph.12506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Nino Goguadze thanks the Euroeast exchange program for Ph.D. students.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tangui Maurice .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Maurice, T., Goguadze, N. (2017). Sigma-1 (σ1) Receptor in Memory and Neurodegenerative Diseases. In: Kim, F., Pasternak, G. (eds) Sigma Proteins: Evolution of the Concept of Sigma Receptors. Handbook of Experimental Pharmacology, vol 244. Springer, Cham. https://doi.org/10.1007/164_2017_15

Download citation

Publish with us

Policies and ethics