Skip to main content

Nuclear Transcription Factors in the Mitochondria: A New Paradigm in Fine-Tuning Mitochondrial Metabolism

  • Chapter
  • First Online:
Pharmacology of Mitochondria

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 240))

Abstract

Noncanonical functions of several nuclear transcription factors in the mitochondria have been gaining exceptional traction over the years. These transcription factors include nuclear hormone receptors like estrogen, glucocorticoid, and thyroid hormone receptors: p53, IRF3, STAT3, STAT5, CREB, NF-kB, and MEF-2D. Mitochondria-localized nuclear transcription factors regulate mitochondrial processes like apoptosis, respiration and mitochondrial transcription albeit being nuclear in origin and having nuclear functions. Hence, the cell permits these multi-stationed transcription factors to orchestrate and fine-tune cellular metabolism at various levels of operation. Despite their ubiquitous distribution in different subcompartments of mitochondria, their targeting mechanism is poorly understood. Here, we review the current status of mitochondria-localized transcription factors and discuss the possible targeting mechanism besides the functional interplay between these factors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Altarejos JY, Montminy M (2011) CREB and the CRTC co-activators: sensors for hormonal and metabolic signals. Nat Rev Mol Cell Biol 12:141–151. doi:10.1038/nrm3072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anandatheerthavarada HK, Sepuri NB, Biswas G, Avadhani NG (2008) An unusual TOM20/TOM22 bypass mechanism for the mitochondrial targeting of cytochrome P450 proteins containing N-terminal chimeric signals. J Biol Chem 283:36060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Avalle L, Pensa S, Regis G, Novelli F, Poli V (2012) STAT1 and STAT3 in tumorigenesis: a matter of balance. JAKSTAT 1:65–72. doi:10.4161/jkst.20045

    PubMed  PubMed Central  Google Scholar 

  • Bernier M, Paul RK, Martin-Montalvo A, Scheibye-Knudsen M, Song S, He HJ, Armour SM, Hubbard BP, Bohr VA, Wang L, Zong Y, Sinclair DA, de Cabo R (2011) Negative regulation of STAT3 protein-mediated cellular respiration by SIRT1 protein. J Biol Chem 286:19270–19279. doi:10.1074/jbc.M110.200311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blanchet E, Bertrand C, Annicotte JS, Schlernitzauer A, Pessemesse L, Levin J, Fouret G, Feillet-Coudray C, Bonafos B, Fajas L, Cabello G, Wrutniak-Cabello C, Casas F (2012) Mitochondrial T3 receptor p43 regulates insulin secretion and glucose homeostasis. FASEB J 26:40–50. doi:10.1096/fj.11-186841

    Article  CAS  PubMed  Google Scholar 

  • Boengler K, Hilfiker-Kleiner D, Heusch G, Schulz R (2010) Inhibition of permeability transition pore opening by mitochondrial STAT3 and its role in myocardial ischemia/reperfusion. Basic Res Cardiol 105:771–785. doi:10.1007/s00395-010-0124-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bogdanov MB, Ferrante RJ, Kuemmerle S, Klivenyi P, Beal MF (1998) Increased vulnerability to 3-nitropropionic acid in an animal model of Huntington’s disease. J Neurochem 71:2642–2644

    Article  CAS  PubMed  Google Scholar 

  • Bopassa JC, Eghbali M, Toro L, Stefani E (2010) A novel estrogen receptor GPER inhibits mitochondria permeability transition pore opening and protects the heart against ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol 298:H16–H23. doi:10.1152/ajpheart.00588.2009

    Article  CAS  PubMed  Google Scholar 

  • Bottero V, Rossi F, Samson M, Mari M, Hofman P, Peyron JF (2001) Ikappa b-alpha, the NF-kappa B inhibitory subunit, interacts with ANT, the mitochondrial ATP/ADP translocator. J Biol Chem 276:21317–21324. doi:10.1074/jbc.M005850200M005850200

    Article  CAS  PubMed  Google Scholar 

  • Bourke LT, Knight RA, Latchman DS, Stephanou A, McCormick J (2013) Signal transducer and activator of transcription-1 localizes to the mitochondria and modulates mitophagy. JAKSTAT 2, e25666. doi:10.4161/jkst.256662013JAKS0144R1

    PubMed  PubMed Central  Google Scholar 

  • Bromberg JF, Wrzeszczynska MH, Devgan G, Zhao Y, Pestell RG, Albanese C, Darnell JE Jr (1999) Stat3 as an oncogene. Cell 98:295–303, doi: S0092-8674(00)81959-5 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Cammarata PR, Chu S, Moor A, Wang Z, Yang SH, Simpkins JW (2004) Subcellular distribution of native estrogen receptor alpha and beta subtypes in cultured human lens epithelial cells. Exp Eye Res 78:861–871. doi:10.1016/j.exer.2003.09.027S0014483503003907

    Article  CAS  PubMed  Google Scholar 

  • Casas F, Pessemesse L, Grandemange S, Seyer P, Gueguen N, Baris O, Lepourry L, Cabello G, Wrutniak-Cabello C (2008) Overexpression of the mitochondrial T3 receptor p43 induces a shift in skeletal muscle fiber types. PLoS One 3, e2501. doi:10.1371/journal.pone.0002501

    Article  PubMed  PubMed Central  Google Scholar 

  • Casas F, Pessemesse L, Grandemange S, Seyer P, Baris O, Gueguen N, Ramonatxo C, Perrin F, Fouret G, Lepourry L, Cabello G, Wrutniak-Cabello C (2009) Overexpression of the mitochondrial T3 receptor induces skeletal muscle atrophy during aging. PLoS One 4, e5631. doi:10.1371/journal.pone.0005631

    Article  PubMed  PubMed Central  Google Scholar 

  • Chacinska A, Koehler CM, Milenkovic D, Lithgow T, Pfanner N (2009) Importing mitochondrial proteins: machineries and mechanisms. Cell 138:628–644. doi:10.1016/j.cell.2009.08.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chattopadhyay S, Marques JT, Yamashita M, Peters KL, Smith K, Desai A, Williams BR, Sen GC (2010) Viral apoptosis is induced by IRF-3-mediated activation of Bax. EMBO J 29:1762–1773. doi:10.1038/emboj.2010.50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen JQ, Delannoy M, Cooke C, Yager JD (2004) Mitochondrial localization of ERalpha and ERbeta in human MCF7 cells. Am J Physiol Endocrinol Metab 286:E1011–E1022. doi:10.1152/ajpendo.00508.200300508.2003

    Article  CAS  PubMed  Google Scholar 

  • Chipuk JE, Kuwana T, Bouchier-Hayes L, Droin NM, Newmeyer DD, Schuler M, Green DR (2004) Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. Science 303:1010–1014. doi:10.1126/science.1092734303/5660/1010

    Article  CAS  PubMed  Google Scholar 

  • Chueh FY, Leong KF, Yu CL (2010) Mitochondrial translocation of signal transducer and activator of transcription 5 (STAT5) in leukemic T cells and cytokine-stimulated cells. Biochem Biophys Res Commun 402:778–783. doi:10.1016/j.bbrc.2010.10.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ciucci A, Zannoni GF, Travaglia D, Scambia G, Gallo D (2015) Mitochondrial estrogen receptor beta2 drives antiapoptotic pathways in advanced serous ovarian cancer. Hum Pathol 46:1138–1146. doi:10.1016/j.humpath.2015.03.016

    Article  CAS  PubMed  Google Scholar 

  • Cogswell PC, Kashatus DF, Keifer JA, Guttridge DC, Reuther JY, Bristow C, Roy S, Nicholson DW, Baldwin AS Jr (2003) NF-kappa B and I kappa B alpha are found in the mitochondria. Evidence for regulation of mitochondrial gene expression by NF-kappa B. J Biol Chem 278:2963–2968. doi:10.1074/jbc.M209995200M209995200

    Article  CAS  PubMed  Google Scholar 

  • De Rasmo D, Signorile A, Roca E, Papa S (2009) cAMP response element-binding protein (CREB) is imported into mitochondria and promotes protein synthesis. FEBS J 276:4325–4333. doi:10.1111/j.1742-4658.2009.07133.x

    Article  PubMed  Google Scholar 

  • Demonacos C, Tsawdaroglou NC, Djordjevic-Markovic R, Papalopoulou M, Galanopoulos V, Papadogeorgaki S, Sekeris CE (1993) Import of the glucocorticoid receptor into rat liver mitochondria in vivo and in vitro. J Steroid Biochem Mol Biol 46:401–413

    Article  CAS  PubMed  Google Scholar 

  • Demonacos C, Djordjevic-Markovic R, Tsawdaroglou N, Sekeris CE (1995) The mitochondrion as a primary site of action of glucocorticoids: the interaction of the glucocorticoid receptor with mitochondrial DNA sequences showing partial similarity to the nuclear glucocorticoid responsive elements. J Steroid Biochem Mol Biol 55:43–55, doi: 096007609500159W [pii]

    Article  CAS  PubMed  Google Scholar 

  • Du J, McEwen B, Manji HK (2009) Glucocorticoid receptors modulate mitochondrial function: a novel mechanism for neuroprotection. Commun Integr Biol 2:350–352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gough DJ, Corlett A, Schlessinger K, Wegrzyn J, Larner AC, Levy DE (2009) Mitochondrial STAT3 supports Ras-dependent oncogenic transformation. Science 324:1713–1716. doi:10.1126/science.1171721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grandemange S, Seyer P, Carazo A, Becuwe P, Pessemesse L, Busson M, Marsac C, Roger P, Casas F, Cabello G, Wrutniak-Cabello C (2005) Stimulation of mitochondrial activity by p43 overexpression induces human dermal fibroblast transformation. Cancer Res 65:4282–4291. doi:10.1158/0008-5472.CAN-04-3652

    Article  CAS  PubMed  Google Scholar 

  • Guo X, Sesaki H, Qi X (2014) Drp1 stabilizes p53 on the mitochondria to trigger necrosis under oxidative stress conditions in vitro and in vivo. Biochem J 461:137–146. doi:10.1042/BJ20131438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson RF, Witzel II, Perkins ND (2011) p53-dependent regulation of mitochondrial energy production by the RelA subunit of NF-kappaB. Cancer Res 71:5588–5597. doi:10.1158/0008-5472.CAN-10-4252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kabir ME, Singh H, Lu R, Olde B, Leeb-Lundberg LM, Bopassa JC (2015) G protein-coupled estrogen receptor 1 mediates acute estrogen-induced cardioprotection via MEK/ERK/GSK-3beta pathway after ischemia/reperfusion. PLoS One 10, e0135988. doi:10.1371/journal.pone.0135988

    Article  PubMed  PubMed Central  Google Scholar 

  • Kong B, Wang Q, Fung E, Xue K, Tsang BK (2014) p53 is required for cisplatin-induced processing of the mitochondrial fusion protein L-Opa1 that is mediated by the mitochondrial metallopeptidase Oma1 in gynecologic cancers. J Biol Chem 289:27134–27145. doi:10.1074/jbc.M114.594812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee J, Kim CH, Simon DK, Aminova LR, Andreyev AY, Kushnareva YE, Murphy AN, Lonze BE, Kim KS, Ginty DD, Ferrante RJ, Ryu H, Ratan RR (2005) Mitochondrial cyclic AMP response element-binding protein (CREB) mediates mitochondrial gene expression and neuronal survival. J Biol Chem 280:40398–40401. doi:10.1074/jbc.C500140200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leigh-Brown S, Enriquez JA, Odom DT (2010) Nuclear transcription factors in mammalian mitochondria. Genome Biol 11:215. doi:10.1186/gb-2010-11-7-215

    Article  PubMed  PubMed Central  Google Scholar 

  • Leu JI, Dumont P, Hafey M, Murphy ME, George DL (2004) Mitochondrial p53 activates Bak and causes disruption of a Bak-Mcl1 complex. Nat Cell Biol 6:443–450. doi:10.1038/ncb1123ncb1123

    Article  CAS  PubMed  Google Scholar 

  • Liang J, Xie Q, Li P, Zhong X, Chen Y (2015) Mitochondrial estrogen receptor beta inhibits cell apoptosis via interaction with Bad in a ligand-independent manner. Mol Cell Biochem 401:71–86. doi:10.1007/s11010-014-2293-y

    Article  CAS  PubMed  Google Scholar 

  • Marchenko ND, Wolff S, Erster S, Becker K, Moll UM (2007) Monoubiquitylation promotes mitochondrial p53 translocation. EMBO J 26:923–934. doi:10.1038/sj.emboj.7601560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marinov GK, Wang YE, Chan D, Wold BJ (2014) Evidence for site-specific occupancy of the mitochondrial genome by nuclear transcription factors. PLoS One 9, e84713. doi:10.1371/journal.pone.0084713PONE-D-13-34454

    Article  PubMed  PubMed Central  Google Scholar 

  • McBride HM, Neuspiel M, Wasiak S (2006) Mitochondria: more than just a powerhouse. Curr Biol 16:R551–R560. doi:10.1016/j.cub.2006.06.054

    Article  CAS  PubMed  Google Scholar 

  • Milner TA, Ayoola K, Drake CT, Herrick SP, Tabori NE, McEwen BS, Warrier S, Alves SE (2005) Ultrastructural localization of estrogen receptor beta immunoreactivity in the rat hippocampal formation. J Comp Neurol 491:81–95. doi:10.1002/cne.20724

    Article  CAS  PubMed  Google Scholar 

  • Mokranjac D, Neupert W (2009) Thirty years of protein translocation into mitochondria: unexpectedly complex and still puzzling. Biochim Biophys Acta 1793:33–41. doi:10.1016/j.bbamcr.2008.06.021

    Article  CAS  PubMed  Google Scholar 

  • Morrish F, Buroker NE, Ge M, Ning XH, Lopez-Guisa J, Hockenbery D, Portman MA (2006) Thyroid hormone receptor isoforms localize to cardiac mitochondrial matrix with potential for binding to receptor elements on mtDNA. Mitochondrion 6:143–148. doi:10.1016/j.mito.2006.04.002

    Article  CAS  PubMed  Google Scholar 

  • Moutsatsou P, Psarra AM, Tsiapara A, Paraskevakou H, Davaris P, Sekeris CE (2001) Localization of the glucocorticoid receptor in rat brain mitochondria. Arch Biochem Biophys 386:69–78. doi:10.1006/abbi.2000.2162

    Article  CAS  PubMed  Google Scholar 

  • Nemoto S, Fergusson MM, Finkel T (2005) SIRT1 functionally interacts with the metabolic regulator and transcriptional coactivator PGC-1{alpha}. J Biol Chem 280:16456–16460. doi:10.1074/jbc.M501485200

    Article  CAS  PubMed  Google Scholar 

  • Pedram A, Razandi M, Wallace DC, Levin ER (2006) Functional estrogen receptors in the mitochondria of breast cancer cells. Mol Biol Cell 17:2125–2137. doi:10.1091/mbc.E05-11-1013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pei L, Shang Y, Jin H, Wang S, Wei N, Yan H, Wu Y, Yao C, Wang X, Zhu LQ, Lu Y (2014) DAPK1-p53 interaction converges necrotic and apoptotic pathways of ischemic neuronal death. J Neurosci 34:6546–6556. doi:10.1523/JNEUROSCI.5119-13.2014

    Article  CAS  PubMed  Google Scholar 

  • Psarra AM, Sekeris CE (2011) Glucocorticoids induce mitochondrial gene transcription in HepG2 cells: role of the mitochondrial glucocorticoid receptor. Biochim Biophys Acta 1813:1814–1821. doi:10.1016/j.bbamcr.2011.05.014

    Article  CAS  PubMed  Google Scholar 

  • Robin MA, Anandatheerthavarada HK, Biswas G, Sepuri NB, Gordon DM, Pain D, Avadhani NG (2002) Bimodal targeting of microsomal CYP2E1 to mitochondria through activation of an N-terminal chimeric signal by cAMP-mediated phosphorylation. J Biol Chem 277:40583–40593. doi:10.1074/jbc.M203292200M203292200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scarpulla RC, Vega RB, Kelly DP (2012) Transcriptional integration of mitochondrial biogenesis. Trends Endocrinol Metab 23:459–466. doi:10.1016/j.tem.2012.06.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scheller K, Sekeris CE, Krohne G, Hock R, Hansen IA, Scheer U (2000) Localization of glucocorticoid hormone receptors in mitochondria of human cells. Eur J Cell Biol 79:299–307. doi:10.1078/S0171-9335(04)70033-3

    Article  CAS  PubMed  Google Scholar 

  • Schulke N, Sepuri NB, Pain D (1997) In vivo zippering of inner and outer mitochondrial membranes by a stable translocation intermediate. Proc Natl Acad Sci U S A 94:7314–7319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schulke N, Sepuri NB, Gordon DM, Saxena S, Dancis A, Pain D (1999) A multisubunit complex of outer and inner mitochondrial membrane protein translocases stabilized in vivo by translocation intermediates. J Biol Chem 274:22847–22854

    Article  CAS  PubMed  Google Scholar 

  • Sepuri NB, Yadav S, Anandatheerthavarada HK, Avadhani NG (2007) Mitochondrial targeting of intact CYP2B1 and CYP2E1 and N-terminal truncated CYP1A1 proteins in Saccharomyces cerevisiae--role of protein kinase A in the mitochondrial targeting of CYP2E1. FEBS J 274:4615–4630. doi:10.1111/j.1742-4658.2007.05990.x

    Article  CAS  PubMed  Google Scholar 

  • Sharif-Askari E, Nakhaei P, Oliere S, Tumilasci V, Hernandez E, Wilkinson P, Lin R, Bell J, Hiscott J (2007) Bax-dependent mitochondrial membrane permeabilization enhances IRF3-mediated innate immune response during VSV infection. Virology 365:20–33. doi:10.1016/j.virol.2007.03.011

    Article  CAS  PubMed  Google Scholar 

  • She H, Yang Q, Shepherd K, Smith Y, Miller G, Testa C, Mao Z (2011) Direct regulation of complex I by mitochondrial MEF2D is disrupted in a mouse model of Parkinson disease and in human patients. J Clin Invest 121:930–940. doi:10.1172/JCI43871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Solakidi S, Psarra AM, Sekeris CE (2005) Differential subcellular distribution of estrogen receptor isoforms: localization of ERalpha in the nucleoli and ERbeta in the mitochondria of human osteosarcoma SaOS-2 and hepatocarcinoma HepG2 cell lines. Biochim Biophys Acta 1745:382–392. doi:10.1016/j.bbamcr.2005.05.010

    Article  CAS  PubMed  Google Scholar 

  • Sterling K, Campbell GA, Brenner MA (1984) Purification of the mitochondrial triiodothyronine (T3) receptor from rat liver. Acta Endocrinol (Copenh) 105:391–397

    CAS  Google Scholar 

  • Strom E, Sathe S, Komarov PG, Chernova OB, Pavlovska I, Shyshynova I, Bosykh DA, Burdelya LG, Macklis RM, Skaliter R, Komarova EA, Gudkov AV (2006) Small-molecule inhibitor of p53 binding to mitochondria protects mice from gamma radiation. Nat Chem Biol 2:474–479. doi:10.1038/nchembio809

    Article  CAS  PubMed  Google Scholar 

  • Szczepanek K, Chen Q, Derecka M, Salloum FN, Zhang Q, Szelag M, Cichy J, Kukreja RC, Dulak J, Lesnefsky EJ, Larner AC (2011) Mitochondrial-targeted Signal transducer and activator of transcription 3 (STAT3) protects against ischemia-induced changes in the electron transport chain and the generation of reactive oxygen species. J Biol Chem 286:29610–29620. doi:10.1074/jbc.M111.226209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szczepanek K, Lesnefsky EJ, Larner AC (2012) Multi-tasking: nuclear transcription factors with novel roles in the mitochondria. Trends Cell Biol 22:429–437. doi:10.1016/j.tcb.2012.05.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Talaber G, Boldizsar F, Bartis D, Palinkas L, Szabo M, Berta G, Setalo G Jr, Nemeth P, Berki T (2009) Mitochondrial translocation of the glucocorticoid receptor in double-positive thymocytes correlates with their sensitivity to glucocorticoid-induced apoptosis. Int Immunol 21:1269–1276. doi:10.1093/intimm/dxp093

    Article  CAS  PubMed  Google Scholar 

  • Tammineni P, Anugula C, Mohammed F, Anjaneyulu M, Larner AC, Sepuri NB (2013) The import of the transcription factor STAT3 into mitochondria depends on GRIM-19, a component of the electron transport chain. J Biol Chem 288:4723–4732. doi:10.1074/jbc.M112.378984

    Article  CAS  PubMed  Google Scholar 

  • Walker SR, Nelson EA, Zou L, Chaudhury M, Signoretti S, Richardson A, Frank DA (2009) Reciprocal effects of STAT5 and STAT3 in breast cancer. Mol Cancer Res 7:966–976. doi:10.1158/1541-7786.MCR-08-0238

    Article  CAS  PubMed  Google Scholar 

  • Wegrzyn J, Potla R, Chwae YJ, Sepuri NB, Zhang Q, Koeck T, Derecka M, Szczepanek K, Szelag M, Gornicka A, Moh A, Moghaddas S, Chen Q, Bobbili S, Cichy J, Dulak J, Baker DP, Wolfman A, Stuehr D, Hassan MO, Fu XY, Avadhani N, Drake JI, Fawcett P, Lesnefsky EJ, Larner AC (2009) Function of mitochondrial Stat3 in cellular respiration. Science 323:793–797. doi:10.1126/science.1164551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson BE, Mochon E, Boxer LM (1996) Induction of bcl-2 expression by phosphorylated CREB proteins during B-cell activation and rescue from apoptosis. Mol Cell Biol 16:5546–5556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie Q, Huang Z, Liu Y, Liu X, Huang L (2015) Mitochondrial estrogen receptor beta inhibits non-small cell lung cancer cell apoptosis via interaction with Bad. Nan Fang Yi Ke Da Xue Xue Bao 35:98–102

    PubMed  Google Scholar 

  • Zamora M, Merono C, Vinas O, Mampel T (2004) Recruitment of NF-kappaB into mitochondria is involved in adenine nucleotide translocase 1 (ANT1)-induced apoptosis. J Biol Chem 279:38415–38423. doi:10.1074/jbc.M404928200M404928200

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Raje V, Yakovlev VA, Yacoub A, Szczepanek K, Meier J, Derecka M, Chen Q, Hu Y, Sisler J, Hamed H, Lesnefsky EJ, Valerie K, Dent P, Larner AC (2013) Mitochondrial localized Stat3 promotes breast cancer growth via phosphorylation of serine 727. J Biol Chem 288:31280–31288. doi:10.1074/jbc.M113.505057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Chaiswing L, Velez JM, Batinic-Haberle I, Colburn NH, Oberley TD, St Clair DK (2005) p53 translocation to mitochondria precedes its nuclear translocation and targets mitochondrial oxidative defense protein-manganese superoxide dismutase. Cancer Res 65:3745–3750. doi:10.1158/0008-5472.CAN-04-3835

    Article  CAS  PubMed  Google Scholar 

  • Zhou Z, Zhou J, Du Y (2012) Estrogen receptor alpha interacts with mitochondrial protein HADHB and affects beta-oxidation activity. Mol Cell Proteomics 11(M111):011056. doi:10.1074/mcp.M111.011056

    PubMed  Google Scholar 

  • Zilfou JT, Lowe SW (2009) Tumor suppressive functions of p53. Cold Spring Harb Perspect Biol 1:a001883. doi:10.1101/cshperspect.a001883

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We would like to thank all the members of Dr. Sepuri lab for critical comments on the manuscript. We are grateful to Dr. Thanuja Krishnamoorthy for critically evaluating the manuscript. We thank the funding agency SERB to Dr. Sepuri lab and DST-FIST and UGC-SAP to the department. Mr. Arun Kumar and Fareed Mohammed are supported by CSIR and UGC Junior Research Fellowship, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naresh Babu V. Sepuri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sepuri, N.B.V., Tammineni, P., Mohammed, F., Paripati, A. (2016). Nuclear Transcription Factors in the Mitochondria: A New Paradigm in Fine-Tuning Mitochondrial Metabolism. In: Singh, H., Sheu, SS. (eds) Pharmacology of Mitochondria. Handbook of Experimental Pharmacology, vol 240. Springer, Cham. https://doi.org/10.1007/164_2016_3

Download citation

Publish with us

Policies and ethics