Skip to main content

Insights into the Role of Opioid Receptors in the GI Tract: Experimental Evidence and Therapeutic Relevance

  • Chapter
  • First Online:
Gastrointestinal Pharmacology

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 239))

Abstract

Opioid drugs are prescribed extensively for pain treatment but when used chronically they induce constipation that can progress to opioid-induced bowel dysfunction. Opioid drugs interact with three classes of opioid receptors: mu opioid receptors (MORs), delta opioid receptors (DOR), and kappa opioid receptors (KORs), but opioid drugs mostly target the MORs. Upon stimulation, opioid receptors couple to inhibitory Gi/Go proteins that activate or inhibit downstream effector proteins. MOR and DOR couple to inhibition of adenylate cyclase and voltage-gated Ca2+ channels and to activation of K+ channels resulting in reduced neuronal activity and neurotransmitter release. KORs couple to inhibition of Ca2+ channels and neurotransmitter release. In the gastrointestinal tract, opioid receptors are localized to enteric neurons, interstitial cells of Cajal, and immune cells. In humans, MOR, DOR, and KOR link to inhibition of acetylcholine release from enteric interneurons and motor neurons and purine/nitric oxide release from inhibitory motor neurons causing inhibition of propulsive motility patterns. MOR and DOR activation also results in inhibition of submucosal secretomotor neurons reducing active Cl secretion and passive water movement into the colonic lumen. Together, these effects on motility and secretion account for the constipation caused by opioid receptor agonists. Tolerance develops to the analgesic effects of opioid receptor agonists but not to the constipating actions. This may be due to differences in trafficking and downstream signaling in enteric nerves in the colon compared to the small intestine and in neuronal pain pathways. Further studies of differential opioid receptor desensitization and tolerance in subsets of enteric neurons may identify new drug or other treatment strategies of opioid-induced bowel dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alex G, Clerc N, Kunze WA, Furness JB (2002) Responses of myenteric S neurones to low frequency stimulation of their synaptic inputs. Neuroscience 110:361–373

    Article  CAS  PubMed  Google Scholar 

  • Anselmi L, Jaramillo I, Palacios M, Huynh J, Sternini C (2013) Ligand-induced mu opioid receptor internalization in enteric neurons following chronic treatment with the opiate fentanyl. J Neurosci Res 91:854–860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anselmi L, Huynh J, Duraffourd C, Jaramillo I, Vegezzi G, Saccani F, Boschetti E, Brecha NC, De Giorgio R, Sternini C (2015) Activation of mu opioid receptors modulates inflammation in acute experimental colitis. Neurogastroenterol Motil 27:509–523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Awouters F, Niemegeers CJ, Janssen PA (1983) Pharmacology of antidiarrheal drugs. Annu Rev Pharmacol Toxicol 23:279–301

    Article  CAS  PubMed  Google Scholar 

  • Bader S, Durk T, Becker G (2013) Methylnaltrexone for the treatment of opioid-induced constipation. Expert Rev Gastroenterol Hepatol 7:13–26

    Article  CAS  PubMed  Google Scholar 

  • Bagnol D, Mansour A, Akil H, Watson SJ (1997) Cellular localization and distribution of the cloned mu and kappa opioid receptors in rat gastrointestinal tract. Neuroscience 81:579–591

    Article  CAS  PubMed  Google Scholar 

  • Bailey CP, Smith FL, Kelly E, Dewey WL, Henderson G (2006) How important is protein kinase C in mu-opioid receptor desensitization and morphine tolerance? Trends Pharmacol Sci 27:558–565

    Article  CAS  PubMed  Google Scholar 

  • Banks MR, Farthing MJ, Robberecht P, Burleigh DE (2005) Antisecretory actions of a novel vasoactive intestinal polypeptide (VIP) antagonist in human and rat small intestine. Br J Pharmacol 144:994–1001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bauer AJ, Sarr MG, Szurszewski JH (1991) Opioids inhibit neuromuscular transmission in circular muscle of human and baboon jejunum. Gastroenterology 101:970–976

    Article  CAS  PubMed  Google Scholar 

  • Bishop-Freeman SC, Feaster MS, Beal J, Miller A, Hargrove RL, Brower JO, Winecker RE (2016) Loperamide-related deaths in North Carolina. J Anal Toxicol 40:677–686

    Article  CAS  PubMed  Google Scholar 

  • Brookes SJ (2001) Classes of enteric nerve cells in the guinea-pig small intestine. Anat Rec 262:58–70

    Article  CAS  PubMed  Google Scholar 

  • Bui K, She F, Zhou D, Butler K, Al-Huniti N, Sostek M (2016) The effect of quinidine, a strong P-glycoprotein inhibitor, on the pharmacokinetics and central nervous system distribution of naloxegol. J Clin Pharmacol 56:497–505

    Article  CAS  PubMed  Google Scholar 

  • Chamouard P, Klein A, Martin E, Adloff M, Angel F (1993) Regulatory role of enteric kappa opioid receptors in human colonic motility. Life Sci 53:1149–1156

    Article  CAS  PubMed  Google Scholar 

  • Chamouard P, Rohr S, Meyer C, Baumann R, Angel F (1994) Delta-opioid receptor agonists inhibit neuromuscular transmission in human colon. Eur J Pharmacol 262:33–39

    Article  CAS  PubMed  Google Scholar 

  • Cherubini E, North RA (1985) Mu and kappa opioids inhibit transmitter release by different mechanisms. Proc Natl Acad Sci U S A 82:1860–1863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cherubini E, Morita K, North RA (1985) Opioid inhibition of synaptic transmission in the guinea-pig myenteric plexus. Br J Pharmacol 85:805–817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chey WD, Webster L, Sostek M, Lappalainen J, Barker PN, Tack J (2014) Naloxegol for opioid-induced constipation in patients with noncancer pain. N Engl J Med 370:2387–2396

    Article  PubMed  Google Scholar 

  • Christie MJ (2008) Cellular neuroadaptations to chronic opioids: tolerance, withdrawal and addiction. Br J Pharmacol 154:384–396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Claing A, Laporte SA, Caron MG, Lefkowitz RJ (2002) Endocytosis of G protein-coupled receptors: roles of G protein-coupled receptor kinases and beta-arrestin proteins. Prog Neurobiol 66:61–79

    Article  CAS  PubMed  Google Scholar 

  • Daniulaityte R, Carlson R, Falck R, Cameron D, Perera S, Chen L, Sheth A (2013) “I just wanted to tell you that loperamide WILL WORK”: a web-based study of extra-medical use of loperamide. Drug Alcohol Depend 130:241–244

    Article  CAS  PubMed  Google Scholar 

  • Davis TP, Sanchez-Covarubias L, Tome ME (2014) P-glycoprotein trafficking as a therapeutic target to optimize CNS drug delivery. Adv Pharmacol 71:25–44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeWire SM, Yamashita DS, Rominger DH, Liu G, Cowan CL, Graczyk TM, Chen XT, Pitis PM, Gotchev D, Yuan C, Koblish M, Lark MW, Violin JD (2013) A G protein-biased ligand at the mu-opioid receptor is potently analgesic with reduced gastrointestinal and respiratory dysfunction compared with morphine. J Pharmacol Exp Ther 344:708–717

    Article  CAS  PubMed  Google Scholar 

  • Duraffourd C, Kumala E, Anselmi L, Brecha NC, Sternini C (2014) Opioid-Induced mitogen-activated protein kinase signaling in rat enteric neurons following chronic morphine treatment. PLoS One 9:e110230

    Article  PubMed  PubMed Central  Google Scholar 

  • Eggleston W, Clark KH, Marraffa JM (2017) Loperamide abuse associated with cardiac dysrhythmia and death. Ann Emerg Med 69:83–86

    Google Scholar 

  • Fei G, Raehal K, Liu S, Qu MH, Sun X, Wang GD, Wang XY, Xia Y, Schmid CL, Bohn LM, Wood JD (2010) Lubiprostone reverses the inhibitory action of morphine on intestinal secretion in guinea pig and mouse. J Pharmacol Exp Ther 334:333–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finn AK, Whistler JL (2001) Endocytosis of the mu opioid receptor reduces tolerance and a cellular hallmark of opiate withdrawal. Neuron 32:829–839

    Article  CAS  PubMed  Google Scholar 

  • Fujita W, Gomes I, Devi LA (2015) Heteromers of mu-delta opioid receptors: new pharmacology and novel therapeutic possibilities. Br J Pharmacol 172:375–387

    Article  CAS  PubMed  Google Scholar 

  • Gade AR, Kang M, Khan F, Grider JR, Damaj MI, Dewey WL, Akbarali HI (2016) Enhanced sensitivity of alpha3beta4 nicotinic receptors in enteric neurons after long-term morphine: implication for opioid-induced constipation. J Pharmacol Exp Ther 357:520–528

    Article  CAS  PubMed  Google Scholar 

  • Galligan JJ, Akbarali HI (2014) Molecular physiology of enteric opioid receptors. Am J Gastroenterol Suppl 2:17–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galligan JJ, LePard KJ, Schneider DA, Zhou X (2000) Multiple mechanisms of fast excitatory synaptic transmission in the enteric nervous system. J Auton Nerv Syst 81:97–103

    Article  CAS  PubMed  Google Scholar 

  • Gomes I, Gupta A, Filipovska J, Szeto HH, Pintar JE, Devi LA (2004) A role for heterodimerization of mu and delta opiate receptors in enhancing morphine analgesia. Proc Natl Acad Sci U S A 101:5135–5139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gray AC, Coupar IM, White PJ (2006) Comparison of opioid receptor distributions in the rat ileum. Life Sci 78:1610–1616

    Article  CAS  PubMed  Google Scholar 

  • Grunkemeier DM, Cassara JE, Dalton CB, Drossman DA (2007) The narcotic bowel syndrome: clinical features, pathophysiology, and management. Clin Gastroenterol Hepatol 5:1126–1139, quiz 1121–1122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heyman JS, Williams CL, Burks TF, Mosberg HI, Porreca F (1988) Dissociation of opioid antinociception and central gastrointestinal propulsion in the mouse: studies with naloxonazine. J Pharmacol Exp Ther 245:238–243

    CAS  PubMed  Google Scholar 

  • Ho A, Lievore A, Patierno S, Kohlmeier SE, Tonini M, Sternini C (2003) Neurochemically distinct classes of myenteric neurons express the μ-opioid receptor in the guinea pig ileum. J Comp Neurol 458:404–411

    Article  CAS  PubMed  Google Scholar 

  • Hughes PA, Costello SP, Bryant RV, Andrews JM (2016) Opioidergic effects on enteric and sensory nerves in the lower GI tract: basic mechanisms and clinical implications. Am J Physiol Gastrointest Liver Physiol 311:G501–G513

    Article  PubMed  Google Scholar 

  • Hwang SJ, Durnin L, Dwyer L, Rhee PL, Ward SM, Koh SD, Sanders KM, Mutafova-Yambolieva VN (2011) beta-nicotinamide adenine dinucleotide is an enteric inhibitory neurotransmitter in human and nonhuman primate colons. Gastroenterology 140:608–617, e606

    Article  CAS  PubMed  Google Scholar 

  • Jin JG, Murthy KS, Grider JR, Makhlouf GM (1996) Stoichiometry of neurally induced VIP release, NO formation, and relaxation in rabbit and rat gastric muscle. Am J Physiol 271:G357–G369

    CAS  PubMed  Google Scholar 

  • Jordan BA, Devi LA (1999) G-protein-coupled receptor heterodimerization modulates receptor function. Nature 399:697–700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang M, Maguma HT, Smith TH, Ross GR, Dewey WL, Akbarali HI (2012) The role of beta-arrestin2 in the mechanism of morphine tolerance in the mouse and guinea pig gastrointestinal tract. J Pharmacol Exp Ther 340:567–576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang J, Compton DR, Vaz RJ, Rampe D (2016) Proarrhythmic mechanisms of the common anti-diarrheal medication loperamide: revelations from the opioid abuse epidemic. Naunyn Schmiedebergs Arch Pharmacol 389:1133–1137

    Article  CAS  PubMed  Google Scholar 

  • Kim HJ, Kim H, Jung MH, Kwon YK, Kim BJ (2016) Berberine induces pacemaker potential inhibition via cGMP-dependent ATP-sensitive K+ channels by stimulating mu/delta opioid receptors in cultured interstitial cells of Cajal from mouse small intestine. Mol Med Rep 14:3985–3991

    CAS  PubMed  Google Scholar 

  • Kopic S, Corradini S, Sidani S, Murek M, Vardanyan A, Foller M, Ritter M, Geibel JP (2010) Ethanol inhibits gastric acid secretion in rats through increased AMP-kinase activity. Cell Physiol Biochem 25:195–202

    Article  CAS  PubMed  Google Scholar 

  • Lacy BE (2016) Emerging treatments in neurogastroenterology: eluxadoline – a new therapeutic option for diarrhea-predominant IBS. Neurogastroenterol Motil 28:26–35

    Article  CAS  PubMed  Google Scholar 

  • Lay J, Carbone SE, DiCello JJ, Bunnett NW, Canals M, Poole DP (2016) Distribution and trafficking of the mu-opioid receptor in enteric neurons of the guinea pig. Am J Physiol Gastrointest Liver Physiol 311:G252–G266

    Article  PubMed  Google Scholar 

  • Lembo AJ, Lacy BE, Zuckerman MJ, Schey R, Dove LS, Andrae DA, Davenport JM, McIntyre G, Lopez R, Turner L, Covington PS (2016) Eluxadoline for irritable bowel syndrome with diarrhea. N Engl J Med 374:242–253

    Article  CAS  PubMed  Google Scholar 

  • Leppert W, Woron J (2016) The role of naloxegol in the management of opioid-induced bowel dysfunction. Ther Adv Gastroenterol 9:736–746

    Article  CAS  Google Scholar 

  • Liu JG, Anand KJ (2001) Protein kinases modulate the cellular adaptations associated with opioid tolerance and dependence. Brain Res Brain Res Rev 38:1–19

    Article  CAS  PubMed  Google Scholar 

  • Madden JJ, Whaley WL, Ketelsen D (1998) Opiate binding sites in the cellular immune system: expression and regulation. J Neuroimmunol 83:57–62

    Article  CAS  PubMed  Google Scholar 

  • Manglik A, Lin H, Aryal DK, McCorvy JD, Dengler D, Corder G, Levit A, Kling RC, Bernat V, Hubner H, Huang XP, Sassano MF, Giguere PM, Lober S, Da D, Scherrer G, Kobilka BK, Gmeiner P, Roth BL, Shoichet BK (2016) Structure-based discovery of opioid analgesics with reduced side effects. Nature 537:185–190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martini L, Whistler JL (2007) The role of mu opioid receptor desensitization and endocytosis in morphine tolerance and dependence. Curr Opin Neurobiol 17:556–564

    Article  CAS  PubMed  Google Scholar 

  • Mihara S, North RA (1986) Opioids increase potassium conductance in submucous neurones of guinea-pig caecum by activating delta-receptors. Br J Pharmacol 88:315–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Minnis J, Patierno S, Kohlmeier SE, Brecha N, Tonini M, Sternini C (2003) Ligand-induced μ opioid receptor endocytosis and recycling in enteric neurons. Neuroscience 119:33–42

    Article  CAS  PubMed  Google Scholar 

  • Mori T, Shibasaki Y, Matsumoto K, Shibasaki M, Hasegawa M, Wang E, Masukawa D, Yoshizawa K, Horie S, Suzuki T (2013) Mechanisms that underlie mu-opioid receptor agonist-induced constipation: differential involvement of mu-opioid receptor sites and responsible regions. J Pharmacol Exp Ther 347:91–99

    Article  CAS  PubMed  Google Scholar 

  • Morita K, North RA (1982) Opiate activation of potassium conductance in myenteric neurons: inhibition by calcium ion. Brain Res 242:145–150

    Article  CAS  PubMed  Google Scholar 

  • North RA, Williams JT, Surprenant A, Christie MJ (1987) Mu and delta receptors belong to a family of receptors that are coupled to potassium channels. Proc Natl Acad Sci U S A 84:5487–5491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan YX (2005) Diversity and complexity of the mu opioid receptor gene: alternative pre-mRNA splicing and promoters. DNA Cell Biol 24:736–750

    Article  CAS  PubMed  Google Scholar 

  • Pasternak GW (2001) Incomplete cross tolerance and multiple mu opioid peptide receptors. Trends Pharmacol Sci 22:67–70

    Article  CAS  PubMed  Google Scholar 

  • Patierno S, Anselmi L, Jaramillo I, Scott D, Garcia R, Sternini C (2011) Morphine induces mu opioid receptor endocytosis in guinea pig enteric neurons following prolonged receptor activation. Gastroenterology 140:618–626

    Article  CAS  PubMed  Google Scholar 

  • Philippe D, Dubuquoy L, Groux H, Brun V, Chuoi-Mariot MT, Gaveriaux-Ruff C, Colombel JF, Kieffer BL, Desreumaux P (2003) Anti-inflammatory properties of the mu opioid receptor support its use in the treatment of colon inflammation. J Clin Invest 111:1329–1338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Philippe D, Chakass D, Thuru X, Zerbib P, Tsicopoulos A, Geboes K, Bulois P, Breisse M, Vorng H, Gay J, Colombel JF, Desreumaux P, Chamaillard M (2006) Mu opioid receptor expression is increased in inflammatory bowel diseases: implications for homeostatic intestinal inflammation. Gut 55:815–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poole DP, Pelayo JC, Scherrer G, Evans CJ, Kieffer BL, Bunnett NW (2011) Localization and regulation of fluorescently labeled delta opioid receptor, expressed in enteric neurons of mice. Gastroenterology 141:982–991, e988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poonyachoti S, Kulkarni-Narla A, Brown DR (2002) Chemical coding of neurons expressing ∂- and k-opioid receptor and type I vanilloind receptor immunoreactivities in the porcine ileum. Cell Tissue Res 307:23–33

    Article  CAS  PubMed  Google Scholar 

  • Raehal KM, Schmid CL, Groer CE, Bohn LM (2011) Functional selectivity at the mu-opioid receptor: implications for understanding opioid analgesia and tolerance. Pharmacol Rev 63:1001–1019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ross GR, Gabra BH, Dewey WL, Akbarali HI (2008) Morphine tolerance in the mouse ileum and colon. J Pharmacol Exp Ther 327:561–572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saccani F, Anselmi L, Jaramillo I, Bertoni S, Barocelli E, Sternini C (2012) Protective role of mu opioid receptor activation in intestinal inflammation induced by mesenteric ischemia/reperfusion in mice. J Neurosci Res 90:2146–2153

    Article  CAS  PubMed  Google Scholar 

  • Shen KZ, Surprenant A (1991) Noradrenaline, somatostatin and opioids inhibit activity of single HVA/N-type calcium channels in excised neuronal membranes. Pflugers Arch 418:614–616

    Article  CAS  PubMed  Google Scholar 

  • Smith TH, Grider JR, Dewey WL, Akbarali HI (2012) Morphine decreases enteric neuron excitability via inhibition of sodium channels. PLoS One 7:e45251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stefano GB, Scharrer B, Smith EM, Hughes TK Jr, Magazine HI, Bilfinger TV, Hartman AR, Fricchione GL, Liu Y, Makman MH (1996) Opioid and opiate immunoregulatory processes. Crit Rev Immunol 16:109–144

    Article  CAS  PubMed  Google Scholar 

  • Sternini C (2001) Receptors and transmission in the brain-gut axis: potential for novel therapies. III. μ opioid receptors in the enteric nervous system. Am J Physiol 281:G8–G15

    CAS  Google Scholar 

  • Sternini C, Spann M, Anton B, Keith DE Jr, Bunnett NW, von Zastrow M, Evans C, Brecha NC (1996) Agonist-selective endocytosis of μ opioid receptor by neurons in vivo. Proc Natl Acad Sci U S A 93:9241–9246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sternini C, Patierno S, Selmer IS, Kirchgessner A (2004) The opioid system in the gastrointestinal tract. Neurogastroenterol Motil 16(Suppl 2):3–16

    Article  PubMed  Google Scholar 

  • Surprenant A, Shen KZ, North RA, Tatsumi H (1990) Inhibition of calcium currents by noradrenaline, somatostatin and opioids in guinea-pig submucosal neurones. J Physiol 431:585–608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tatsumi H, Costa M, Schimerlik M, North RA (1990) Potassium conductance increased by noradrenaline, opioids, somatostatin, and G-proteins: whole-cell recording from guinea pig submucous neurons. J Neurosci 10:1675–1682

    CAS  PubMed  Google Scholar 

  • Vandenbossche J, Huisman M, Xu Y, Sanderson-Bongiovanni D, Soons P (2010) Loperamide and P-glycoprotein inhibition: assessment of the clinical relevance. J Pharm Pharmacol 62:401–412

    Article  CAS  PubMed  Google Scholar 

  • Vaughn P, Solik MM, Bagga S, Padanilam BJ (2016) Electrocardiographic abnormalities, malignant ventricular arrhythmias, and cardiomyopathy associated with loperamide abuse. J Cardiovasc Electrophysiol 27:1230–1233

    Article  PubMed  Google Scholar 

  • Violin JD, Lefkowitz RJ (2007) Beta-arrestin-biased ligands at seven-transmembrane receptors. Trends Pharmacol Sci 28:416–422

    Article  CAS  PubMed  Google Scholar 

  • Wade PR, Palmer JM, McKenney S, Kenigs V, Chevalier K, Moore BA, Mabus JR, Saunders PR, Wallace NH, Schneider CR, Kimball ES, Breslin HJ, He W, Hornby PJ (2012) Modulation of gastrointestinal function by MuDelta, a mixed micro opioid receptor agonist/ micro opioid receptor antagonist. Br J Pharmacol 167:1111–1125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Webster LR, Brenner DM, Barrett AC, Paterson C, Bortey E, Forbes WP (2015) Analysis of opioid-mediated analgesia in Phase III studies of methylnaltrexone for opioid-induced constipation in patients with chronic noncancer pain. J Pain Res 8:771–780

    Article  PubMed  PubMed Central  Google Scholar 

  • Williams JT, Ingram SL, Henderson G, Chavkin C, von Zastrow M, Schulz S, Koch T, Evans CJ, Christie MJ (2013) Regulation of mu-opioid receptors: desensitization, phosphorylation, internalization, and tolerance. Pharmacol Rev 65:223–254

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou X, Brown E, Schneider D, Caraballo-Lopez Y, Galligan JJ (2002) Pharmacological properties of nicotinic acetylcholine receptors expressed by guinea pig small intestinal myenteric neurons. J Pharmacol Exp Ther 302:889–897

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH DK094932 (JJG), NIH P30 DK41301, Imaging Core (CS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James J. Galligan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Galligan, J.J., Sternini, C. (2016). Insights into the Role of Opioid Receptors in the GI Tract: Experimental Evidence and Therapeutic Relevance. In: Greenwood-Van Meerveld, B. (eds) Gastrointestinal Pharmacology . Handbook of Experimental Pharmacology, vol 239. Springer, Cham. https://doi.org/10.1007/164_2016_116

Download citation

Publish with us

Policies and ethics