Skip to main content

Functional Genomics in Pharmaceutical Drug Discovery

  • Chapter
New Approaches to Drug Discovery

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 232))

Abstract

Targeted therapies in personalized medicine require the knowledge about the molecular changes within the patient that cause the disease. With the beginning of the new century, a plethora of new technologies became available to detect these changes and use this information as starting point for drug development. Next-generation genome sequencing and sophisticated genome-wide functional genomics’ methods have led to a significant increase in the identification of novel drug target candidates and understanding of the relevance of these genomic and molecular changes for the diseases. As functional genomic tool for target identification, high-throughput gene silencing through RNA interference screening has become the established method. RNAi is discussed with its advantages and challenges in this chapter. Furthermore the potential of CRISPR/Cas9, a gene-editing method that has recently been adapted for use as functional screening tool, will be briefly reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Cas9:

CRISPR-associated nuclease

CCLE:

Cancer cell line encyclopedia

CRISPR/Cas9:

Clustered regularly interspaced short palindromic repeats/Cas9

CRISPRa:

CRISPR activation

CRISPRi:

CRISPR interference

dsRNA:

Double-stranded DNA

DNA:

Deoxyribonucleic acid

esiRNA:

Endoribonuclease-prepared siRNA

FACS:

Fluorescence-activated cell sorting

GoF:

Gain of function

HCS:

High-content screening

LoF:

Loss of function

miRNA:

MicroRNA

NGS:

Next-generation sequencing

NHEJ:

Nonhomologous end join

OTE:

Off-target effect

RISC:

RNA-induced silencing complex

RNAi:

RNA interference

sgRNA:

(Small) guide RNA

shRNA:

Small hairpin RNA

siRNA:

Small interfering RNA

UTR:

Untranslated region

References

  • Ameres SL, Martinez J, Schroeder R (2007) Cell 130:101–112

    Article  CAS  PubMed  Google Scholar 

  • Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin AA, Kim S, Wilson CJ, Lehar J, Kryukov GV, Sonkin D, Reddy A, Liu M, Murray L, Berger MF, Monahan JE, Morais P, Meltzer J, Korejwa A, Jane-Valbuena J, Mapa FA, Thibault J, Bric-Furlong E, Raman P, Shipway A, Engels IH, Cheng J, Yu GK, Yu J, Aspesi P, de Silva M, Jagtap K, Jones MD, Wang L, Hatton C, Palescandolo E, Gupta S, Mahan S, Sougnez C, Onofrio RC, Liefeld T, MacConaill L, Winckler W, Reich M, Li N, Mesirov JP, Gabriel SB, Getz G, Ardlie K, Chan V, Myer VE, Weber BL, Porter J, Warmuth M, Finan P, Harris JL, Meyerson M, Golub TR, Morrissey MP, Sellers WR, Schlegel R, Garraway LA (2012) The cancer cell line encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 483:603–607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bassik MC, Lebbink RJ, Churchman LS, Ingolia NT, Patena W, LeProust EM, Schuldiner M, Weissman JS, McManus MT (2009) Rapid creation and quantitative monitoring of high coverage shRNA libraries. Nat Methods 6:443–445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernards R, Brummelkamp TR, Beijersbergen RL (2006) shRNA libraries and their use in cancer genetics. Nature Methods 3:701–706

    Article  CAS  PubMed  Google Scholar 

  • Birmingham A, Anderson EM, Reynolds A, Ilsley-Tyree D, Leake D, Fedorov Y, Baskerville S, Maksimova E, Robinson K, Karpilow J, Marshall WS, Khvorova A (2006) 3′ UTR seed matches, but not overall identity, are associated with RNAi off-targets. Nat Methods 3:199–204

    Article  CAS  PubMed  Google Scholar 

  • Birmingham A, Selfors LM, Forster T, Wrobel D, Kennedy CJ, Shanks E, Santoyo-Lopez J, Dunican DJ, Long A, Kelleher D, Smith Q, Beijersbergen RL, Ghazal P, Shamu CE (2009) Statistical methods for analysis of high-throughput RNA interference screens. Nat Methods 6:569–575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boutros M, Ahringer J (2008) The art and design of genetic screens: RNA interference. Nat Rev Genet 9:554–566

    Article  CAS  PubMed  Google Scholar 

  • Brideau C, Gunter B, Pikounis B, Liaw A (2003) Improved statistical methods for hit selection in high-throughput screening. J Biomol Screen 8:634–647

    Article  PubMed  Google Scholar 

  • Brummelkamp TR, Bernards R, Agami R (2002) A system for stable expression of short interfering RNAs in mammalian cells. Science 296:550–553

    Article  CAS  PubMed  Google Scholar 

  • Buehler E, Chen YC, Martin S (2012a) C911: a bench-level control for sequence specific siRNA off-target effects. PLoS One 7:14

    Article  Google Scholar 

  • Buehler E, Khan AA, Marine S, Rajaram M, Bahl A, Burchard J, Ferrer M (2012b) siRNA off-target effects in genome-wide screens identify signaling pathway members. Sci Rep 2:428

    Google Scholar 

  • Cheng AW, Wang H, Yang H, Shi L, Katz Y, Theunissen TW, Rangarajan S, Shivalila CS, Dadon DB, Jaenisch R (2013) Multiplexed activation of endogenous genes by CRISPR-on, an RNA-guided transcriptional activator system. Cell Res 23:1163–1171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheung HW, Cowley GS, Weir BA, Boehm JS, Rusin S, Scott JA, East A, Ali LD, Lizotte PH, Wong TC, Jiang G, Hsiao J, Mermel CH, Getz G, Barretina J, Gopal S, Tamayo P, Gould J, Tsherniak A, Stransky N, Luo B, Ren Y, Drapkin R, Bhatia SN, Mesirov JP, Garraway LA, Meyerson M, Lander ES, Root DE, Hahn WC (2011) Systematic investigation of genetic vulnerabilities across cancer cell lines reveals lineage-specific dependencies in ovarian cancer. Proc Natl Acad Sci U S A 108:12372–12377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diehl P, Tedesco D, Chenchik A (2014) Use of RNAi screens to uncover resistance mechanisms in cancer cells and identify synthetic lethal interactions. Drug Discov Today Technol 11:11–18

    Article  PubMed  Google Scholar 

  • Doench JG, Hartenian E, Graham DB, Tothova Z, Hegde M, Smith I, Sullender M, Ebert BL, Xavier RJ, Root DE (2014) Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation. Nat Biotechnol 32:1262–1267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411:494–498

    Article  CAS  PubMed  Google Scholar 

  • Fehrmann RS, Karjalainen JM, Krajewska M, Westra HJ, Maloney D, Simeonov A, Pers TH, Hirschhorn JN, Jansen RC, Schultes EA, van Haagen HH, de Vries EG, Te Meerman GJ, Wijmenga C, van Vugt MA, Franke L (2015) Gene expression analysis identifies global gene dosage sensitivity in cancer. Nat Genet 47:115–125

    Article  CAS  PubMed  Google Scholar 

  • Fennell M, Xiang Q, Hwang A, Chen C, Huang C-H, Chen C-C, Pelossof R, Garippa RJ (2014) Impact of RNA-guided technologies for target identification and deconvolution. J Biomol Screen 19:1327–1337

    Article  CAS  PubMed  Google Scholar 

  • Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811

    Article  CAS  PubMed  Google Scholar 

  • Gilbert Luke A, Horlbeck Max A, Adamson B, Villalta Jacqueline E, Chen Y, Whitehead Evan H, Guimaraes C, Panning B, Ploegh Hidde L, Bassik Michael C, Qi Lei S, Kampmann M, Weissman Jonathan S (2014) Genome-scale CRISPR-mediated control of gene repression and activation. Cell 159:647–661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grimm S (2004) The art and design of genetic screens: mammalian culture cells. Nat Rev Genet 5:179–189

    Article  CAS  PubMed  Google Scholar 

  • Guilinger JP, Thompson DB, Liu DR (2014) Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nat Biotechol 32:577–582

    Article  CAS  Google Scholar 

  • Helming KC, Wang X, Wilson BG, Vazquez F, Haswell JR, Manchester HE, Kim Y, Kryukov GV, Ghandi M, Aguirre AJ, Jagani Z, Wang Z, Garraway LA, Hahn WC, Roberts CW (2014) ARID1B is a specific vulnerability in ARID1A-mutant cancers. Nat Med 20:251–254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hendel A, Fine EJ, Bao G, Porteus MH (2015) Quantifying on- and off-target genome editing. Trends Biotechnol 33:132–140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jackson AL, Bartz SR, Schelter J, Kobayashi SV, Burchard J, Mao M, Li B, Cavet G, Linsley PS (2003) Expression profiling reveals off-target gene regulation by RNAi. Nat Biotechnol 21:635–637

    Article  CAS  PubMed  Google Scholar 

  • Jinek M, East A, Cheng A, Lin S, Ma E, Doudna J (2013) RNA-programmed genome editing in human cells. Elife 29:00471

    Google Scholar 

  • Khan AA, Betel D, Miller ML, Sander C, Leslie CS, Marks DS (2009) Transfection of small RNAs globally perturbs gene regulation by endogenous microRNAs. Nat Biotechnol 27:549–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM (2013) RNA-guided human genome engineering via Cas9. Science 339:823–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin SE, Caplen NJ (2007) Annu Rev Genomics Hum Genet 8:81–108

    Article  CAS  PubMed  Google Scholar 

  • McManus MT, Petersen CP, Haines BB, Chen J, Sharp PA (2002) Gene silencing using micro-RNA designed hairpins. RNA 8:842–850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohr SE, Smith JA, Shamu CE, Neumuller RA, Perrimon N (2014) RNAi screening comes of age: improved techniques and complementary approaches. Nat Rev Mol Cell Biol 15:591–600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moore JD (2015) The impact of CRISPR–Cas9 on target identification and validation. Drug Discov Today 20(4):450–457

    Article  CAS  PubMed  Google Scholar 

  • Napoli C, Lemieux C, Jorgensen R (1990) Introduction of a chimeric chalcone synthase gene into petunia results in reversible Co-suppression of homologous genes in trans. Plant Cell 2:279–289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paddison PJ, Caudy AA, Bernstein E, Hannon GJ, Conklin DS (2002) Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes Dev 16:948–958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patel AC (2013) Clinical relevance of target identity and biology: implications for drug discovery and development. J Biomol Screen 18:1164–1185

    Article  CAS  PubMed  Google Scholar 

  • Pelz O, Gilsdorf M, Boutros M (2010) Web cellHTS2: a web-application for the analysis of high-throughput screening data. BMC Bioinformatics 11:1471–2105

    Article  Google Scholar 

  • Sander JD, Joung JK (2014) CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol 32:347–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanjana NE, Shalem O, Zhang F (2014) Improved vectors and genome-wide libraries for CRISPR screening. Nat Methods 11:783–784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shalem O, Sanjana NE, Hartenian E, Shi X, Scott DA, Mikkelsen TS, Heckl D, Ebert BL, Root DE, Doench JG, Zhang F (2014) Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 343:84–87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sigoillot FD, King RW (2011) Vigilance and validation: keys to success in RNAi screening. ACS Chem Biol 6:47–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sigoillot FD, Lyman S, Huckins JF, Adamson B, Chung E, Quattrochi B, King RW (2012) A bioinformatics method identifies prominent off-targeted transcripts in RNAi screens. Nat Methods 9(4):363–366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Surendranath V, Theis M, Habermann BH, Buchholz F (2013) Designing efficient and specific endoribonuclease-prepared siRNAs. Methods Mol Biol 942:193–204

    Article  CAS  PubMed  Google Scholar 

  • Wang T, Wei JJ, Sabatini DM, Lander ES (2014) Genetic screens in human cells using the CRISPR-Cas9 system. Science 342:80–84

    Article  Google Scholar 

  • Weinstein IB (2002) Cancer. Addiction to oncogenes–the Achilles heel of cancer. Science 297:63–64

    Article  CAS  PubMed  Google Scholar 

  • Wenzel C, Riefke B, Grundemann S, Krebs A, Christian S, Prinz F, Osterland M, Golfier S, Rase S, Ansari N, Esner M, Bickle M, Pampaloni F, Mattheyer C, Stelzer EH, Parczyk K, Prechtl S, Steigemann P (2014) 3D high-content screening for the identification of compounds that target cells in dormant tumor spheroid regions. Exp Cell Res 323:131–143

    Article  CAS  PubMed  Google Scholar 

  • Wilson BG, Helming KC, Wang X, Kim Y, Vazquez F, Jagani Z, Hahn WC, Roberts CW (2014) Residual complexes containing SMARCA2 (BRM) underlie the oncogenic drive of SMARCA4 (BRG1) mutation. Mol Cell Biol 34:1136–1144

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou Y, Zhu S, Cai C, Yuan P, Li C, Huang Y, Wei W (2014) High-throughput screening of a CRISPR/Cas9 library for functional genomics in human cells. Nature 509:487–491

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We very much thank Anne Adams for her help with designing the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Nicke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Adams, R., Steckel, M., Nicke, B. (2015). Functional Genomics in Pharmaceutical Drug Discovery. In: Nielsch, U., Fuhrmann, U., Jaroch, S. (eds) New Approaches to Drug Discovery. Handbook of Experimental Pharmacology, vol 232. Springer, Cham. https://doi.org/10.1007/164_2015_27

Download citation

Publish with us

Policies and ethics