Skip to main content

Genomics for Genetic Rescue

  • Chapter
  • First Online:
Population Genomics: Wildlife

Part of the book series: Population Genomics ((POGE))

Abstract

Genetic rescue, where new alleles cause increased population growth, has successfully reversed population declines in several iconic species. Concerns over outbreeding depression and genomic swamping limit this technique’s application in wildlife management. New genomic approaches can improve the implementation and monitoring of genetic rescue, making it an even more effective management strategy. In planning stages, genomics can help identify populations that would benefit most from augmented gene flow and populations and individuals that would be the best sources. After augmented gene flow, genomics can be used to monitor the outcome of genetic rescue and determine if and when additional gene flow is needed. Here, we outline specific ways in which genomics can be used to (1) test for inbreeding and inbreeding depression; (2) predict the probability that gene flow will cause outbreeding depression versus genetic rescue; (3) monitor the results of assisted gene flow; and (4) determine the genetic architecture underlying genetic rescue to improve future attempts. We conclude by outlining recommendations on how genomic data can be used to improve the effectiveness of genetic rescue and reduce uncertainty about its outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aitken SN, Whitlock MC. Assisted gene flow to facilitate local adaptation to climate change. Annu Rev Ecol Evol Syst. 2013;44:367–88.

    Article  Google Scholar 

  • Alexander DH, Novembre J, Lange K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 2009;19:1655–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allendorf FW, Knudsen KL, Blake GM. Frequencies of null alleles at enzyme loci in natural populations of ponderosa and red pine. Genetics. 1982;100:497–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allendorf FW, Leary RF, Spruell P, Wenburg JK. The problems with hybrids: setting conservation guidelines. Trends Ecol Evol. 2001;16:613–22.

    Article  Google Scholar 

  • Allendorf FW, Hohenlohe PA, Luikart G. Genomics and the future of conservation genetics. Nat Rev Genet. 2010;11:697–709.

    Article  CAS  PubMed  Google Scholar 

  • Allendorf FW, Luikart G, Aitken SN. Conservation and the genetics of populations. 2nd ed. Oxford: Wiley-Blackwell; 2013.

    Google Scholar 

  • Anderson EC, Thompson EA. A model-based method for identifying species hybrids using multilocus genetic data. Genetics. 2002;160:1217–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andrews KR, Good JM, Miller MR, Luikart G, Hohenlohe PA. Harnessing the power of RADseq for ecological and evolutionary genomics. Nat Rev Genet. 2016;17:81–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science. 2007;315:1709–12.

    Article  CAS  PubMed  Google Scholar 

  • Bell G, Gonzalez A. Evolutionary rescue can prevent extinction following environmental change. Ecol Lett. 2009;12:942–8.

    Article  PubMed  Google Scholar 

  • Bell G, Gonzalez A. Adaptation and evolutionary rescue in metapopulations experiencing environmental deterioration. Science. 2011;332:1327–30.

    Article  CAS  PubMed  Google Scholar 

  • Benestan LM, Ferchaud AL, Hohenlohe PA, Garner BA, Naylor GJP, Baums IB, et al. Conservation genomics of natural and managed populations: building a conceptual and practical framework. Mol Ecol. 2016;25:2967–77.

    Article  PubMed  Google Scholar 

  • Bouzat JL. Conservation genetics of population bottlenecks: the role of chance, selection, and history. Conserv Genet. 2010;11:463–78.

    Article  Google Scholar 

  • Bradburd GS, Ralph PL, Coop GM. A spatial framework for understanding population structure and admixture. PLoS Genet. 2016;12:e1005703.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brown JH, Kodric-Brown A. Turnover rates in insular biogeography: effect of immigration on extinction. Ecology. 1977;58:445.

    Article  Google Scholar 

  • Browning SR, Browning BL. Accurate non-parametric estimation of recent effective population size from segments of identity by descent. Am J Hum Genet. 2015;97:404–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burton RS, Pereira RJ, Barreto FS. Cytonuclear genomic interactions and hybrid breakdown. Annu Rev Ecol Evol Syst. 2013;44:281–302.

    Article  Google Scholar 

  • Carlson SM, Cunningham CJ, Westley PAH. Evolutionary rescue in a changing world. Trends Ecol Evol. 2014;29:521–30.

    Article  PubMed  Google Scholar 

  • Catchen JM, Hohenlohe PA, Bernatchez L, Funk WC, Andrews KR, Allendorf FW. Unbroken: RADseq remains a powerful tool for understanding the genetics of adaptation in natural populations. Mol Ecol Resour. 2017;17:362–5.

    Article  CAS  PubMed  Google Scholar 

  • Ceballos G, Ehrlich PR, Dirzo R. Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines. PNAS. 2017;114:E6089–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ceballos FC, Joshi PK, Clark DW, Ramsay M, Wilson JF. Runs of homozygosity: windows into population history and trait architecture. Nat Rev Genet. 2018;19:220–34.

    Article  CAS  PubMed  Google Scholar 

  • Chapman JR, Nakagawa S, Coltman DW, Slate J, Sheldon BC. A quantitative review of heterozygosity-fitness correlations in animal populations. Mol Ecol. 2009;18:2746–65.

    Article  CAS  PubMed  Google Scholar 

  • Charlesworth B, Charlesworth D. The genetic basis of inbreeding depression. Genet Res. 1999;74:329–40.

    Article  CAS  PubMed  Google Scholar 

  • Charlesworth D, Willis JH. The genetics of inbreeding depression. Nat Rev Genet. 2009;10:783–96.

    Article  CAS  PubMed  Google Scholar 

  • Chen N, Cosgrove EJ, Bowman R, Fitzpatrick JW, Clark AG. Genomic consequences of population decline in the endangered Florida scrub-jay. Curr Biol. 2016;26:2974–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coltman DW, Slate J. Microsatellite measures of inbreeding: a meta-analysis. Evolution. 2003;57:971–83.

    Article  CAS  PubMed  Google Scholar 

  • Corander J, Waldmann P, Sillanpää MJ. Bayesian analysis of genetic differentiation between populations. Genetics. 2003;163:367–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cornuet JM, Luikart G. Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics. 1996;144:2001–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coyne JA, Orr HA. Speciation. Sunderland: Sinauer Associates; 2004.

    Google Scholar 

  • Crow JF, Kimura M. An introduction to population genetics theory. New York: Harper & Row; 1970.

    Google Scholar 

  • Delsuc F, Brinkmann H, Philippe H. Phylogenomics and the reconstruction of the tree of life. Nat Rev Genet. 2005;6:361–75.

    Article  CAS  PubMed  Google Scholar 

  • Do C, Waples RS, Peel D, Macbeth GM, Tillett BJ, Ovenden JR. NeEstimatorv2: re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Mol Ecol Resour. 2013;14:209–14.

    Article  PubMed  Google Scholar 

  • Domingos FMCB, Colli GR, Lemmon A, Lemmon EM, Beheregaray LB. In the shadows: phylogenomics and coalescent species delimitation unveil cryptic diversity in a Cerrado endemic lizard (Squamata: Tropidurus). Mol Phylogenet Evol. 2017;107:455–65.

    Article  PubMed  Google Scholar 

  • Edmands S. Heterosis and outbreeding depression in interpopulation crosses spanning a wide range of divergence. Evolution. 1999;53:1757–68.

    Article  PubMed  Google Scholar 

  • Edmands S. Between a rock and a hard place: evaluating the relative risks of inbreeding and outbreeding for conservation and management. Mol Ecol. 2006;16:463–75.

    Article  Google Scholar 

  • Edmands S, Timmerman CC. Modeling factors affecting the severity of outbreeding depression. Conserv Biol. 2003;17:883–92.

    Article  Google Scholar 

  • Ekblom R, Smeds L, Ellegren H. Patterns of sequencing coverage bias revealed by ultra-deep sequencing of vertebrate mitochondria. BMC Genomics. 2014;15:467.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fitzpatrick SW, Gerberich JC, Kronenberger JA, Angeloni LM, Funk WC. Locally adapted traits maintained in the face of high gene flow. Ecol Lett. 2015;18:37–47.

    Google Scholar 

  • Fitzpatrick SW, Gerberich JC, Angeloni LM, Bailey LL, Broder ED, Torres Dowdall J, et al. Gene flow from an adaptively divergent source causes rescue through genetic and demographic factors in two wild populations of Trinidadian guppies. Evol Appl. 2016;9:879–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fitzpatrick SW, Handelsman C, Torres-Dowdall J, Ruell E, Broder ED, Kronenberger JA, Reznick DN, Ghalambor CK, Angeloni LM, Funk WC. Gene flow constrains and facilitates genetically based divergence in quantitative traits. Copeia. 2017;105:462–74.

    Article  Google Scholar 

  • Foll M, Shim H, Jensen JD. WFABC: a Wright-Fisher ABC-based approach for inferring effective population sizes and selection coefficients from time-sampled data. Mol Ecol Resour. 2015;15:87–98.

    Article  PubMed  Google Scholar 

  • Forester BR, Lasky JR, Wagner HH, Urban DL. Comparing methods for detecting multilocus adaptation with multivariate genotype-environment associations. Mol Ecol. 2018;27:2215–33.

    Article  CAS  PubMed  Google Scholar 

  • Frankham R. Genetics and extinction. Biol Conserv. 2005;126:131–40.

    Article  Google Scholar 

  • Frankham R. Genetic rescue benefits persist to at least the F3 generation, based on a meta-analysis. Biol Conserv. 2016;195:33–6.

    Article  Google Scholar 

  • Frankham R, Ballou JD, Eldridge MDB, Lacy RC, Ralls K, Dudash MR, et al. Predicting the probability of outbreeding depression. Conserv Biol. 2011;25:465–75.

    Article  PubMed  Google Scholar 

  • Frankham R, Ballou JD, Ralls K, Eldridge M, Dudash MR, Fenster CB, et al. Genetic management of fragmented animal and plant populations. Oxford: Oxford University Press; 2017.

    Book  Google Scholar 

  • Funk WC, McKay JK, Hohenlohe PA, Allendorf FW. Harnessing genomics for delineating conservation units. Trends Ecol Evol. 2012;27:489–96.

    Article  PubMed  PubMed Central  Google Scholar 

  • Funk WC, Lovich RE, Hohenlohe PA, Hofman CA, Morrison SA, Sillett TS, et al. Adaptive divergence despite strong genetic drift: genomic analysis of the evolutionary mechanisms causing genetic differentiation in the island fox (Urocyon littoralis). Mol Ecol. 2016;25:2176–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Funk WC, Forester BR, Converse SJ, Darst C, Morey S. Improving conservation policy with genomics: a guide to integrating adaptive potential into U.S. Endangered Species Act decisions for conservation practitioners and geneticists. Conserv Genet. 2018;65:2481.

    Google Scholar 

  • Garant D, Forde SE, Hendry AP. The multifarious effects of dispersal and gene flow on contemporary adaptation. Funct Ecol. 2007;21:434–43.

    Article  Google Scholar 

  • Garcia-Dorado A. Understanding and predicting the fitness decline of shrunk populations: inbreeding, purging, mutation, and standard selection. Genetics. 2012;190:1461–76.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gompert Z, Buerkle CA. Bayesian estimation of genomic clines. Mol Ecol. 2011;20:2111–27.

    Article  PubMed  Google Scholar 

  • Gravel S. Population genetics models of local ancestry. Genetics. 2012;191:607–19.

    Article  PubMed  PubMed Central  Google Scholar 

  • Grueber CE, Sutton JT, Heber S, Briskie JV, Jamieson IG, Robertson BC. Reciprocal translocation of small numbers of inbred individuals rescues immunogenetic diversity. Mol Ecol. 2017;26:2660–73.

    Article  CAS  PubMed  Google Scholar 

  • Gulisija D, Crow JF. Inferring purging from pedigree data. Evolution. 2007;61:1043–51.

    Article  PubMed  Google Scholar 

  • Gutenkunst RN, Hernandez RD, Williamson SH, Bustamante CD. Inferring the joint demographic history of multiple populations from multidimensional SNP frequency data. PLoS Genet. 2009;5:e1000695.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hale ML, Burg TM, Steeves TE. Sampling for microsatellite-based population genetic studies: 25 to 30 individuals per population is enough to accurately estimate allele frequencies. PLoS One. 2012;7:e45170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamilton JA, Miller JM. Adaptive introgression as a resource for management and genetic conservation in a changing climate. Conserv Biol. 2016;30:33–41.

    Article  PubMed  Google Scholar 

  • Hansson B, Westerberg L. On the correlation between heterozygosity and fitness in natural populations. Mol Ecol. 2002;11:2467–74.

    Article  PubMed  Google Scholar 

  • Harris K, Nielsen R. Inferring demographic history from a spectrum of shared haplotype lengths. PLoS Genet. 2013;9:e1003521.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harrisson KA, Pavlova A, Gonçalves da Silva A, Rose R, Bull JK, Lancaster ML, et al. Scope for genetic rescue of an endangered subspecies though re-establishing natural gene flow with another subspecies. Mol Ecol. 2016;25:1242–58.

    Article  PubMed  Google Scholar 

  • Havird JC, Fitzpatrick SW, Kronenberger J, Funk WC, Angeloni LM, Sloan DB. Sex, mitochondria, and genetic rescue. Trends Ecol Evol. 2016;31:96–9.

    Article  PubMed  Google Scholar 

  • Hedrick PW, Garcia-Dorado A. Understanding inbreeding depression, purging, and genetic rescue. Trends Ecol Evol. 2016;31:940–52.

    Article  PubMed  Google Scholar 

  • Hedrick PW, Adams JR, Vucetich JA. Reevaluating and broadening the definition of genetic rescue. Conserv Biol. 2011;25:1069–70.

    Article  PubMed  Google Scholar 

  • Hedrick PW, Allendorf FW, Waples RS. Genetic engineering in conservation. Nature. 2013;502:303.

    Article  CAS  PubMed  Google Scholar 

  • Hedrick PW, Peterson RO, Vucetich LM, Adams JR, Vucetich JA. Genetic rescue in Isle Royale wolves: genetic analysis and the collapse of the population. Conserv Genet. 2014;15:1111–21.

    Article  Google Scholar 

  • Hill GE. Mitonuclear ecology. Mol Biol Evol. 2015;32:1917–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoban S, Kelley JL, Lotterhos KE, Antolin MF, Bradburd G, Lowry DB, et al. Finding the genomic basis of local adaptation: pitfalls, practical solutions, and future directions. Am Nat. 2016;188:379–97.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hoffman JI, Simpson F, David P, Rijks JM, Kuiken T, Thorne MAS, et al. High-throughput sequencing reveals inbreeding depression in a natural population. PNAS. 2014;111:3775–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoffmann AA, Rieseberg LH. Revisiting the impact of inversions in evolution: from population genetic markers to drivers of adaptive shifts and speciation? Annu Rev Ecol Evol Syst. 2008;39:21–42.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hoffmann AA, Sgro CM, Kristensen TN. Revisiting adaptive potential, population size, and conservation. Trends Ecol Evol. 2017;32:506–17.

    Article  PubMed  Google Scholar 

  • Hofman CA, Rick TC, Hawkins MTR, Funk WC, Ralls K, Boser CL, et al. Mitochondrial genomes suggest rapid evolution of dwarf California Channel Islands foxes (Urocyon littoralis). PLoS One. 2015;10:e0118240.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hogg JT, Forbes SH, Steele BM, Luikart G. Genetic rescue of an insular population of large mammals. Proc R Soc B Biol Sci. 2006;273:1491–9.

    Article  Google Scholar 

  • Hohenlohe PA, Day MD, Amish SJ, Miller MR, Kamps-Hughes N, Boyer MC, et al. Genomic patterns of introgression in rainbow and westslope cutthroat trout illuminated by overlapping paired-end RAD sequencing. Mol Ecol. 2013;22:3002–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeffries KM, Connon RE, Davis BE, Komoroske LM, Britton MT, Sommer T, et al. Effects of high temperatures on threatened estuarine fishes during periods of extreme drought. J Exp Biol. 2016;219:1705–16.

    Article  PubMed  Google Scholar 

  • Johnson WE, Onorato DP, Roelke ME, Land ED, Cunningham M, Belden RC, et al. Genetic restoration of the Florida panther. Science. 2010;329:1641–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jombart T, Ahmed I. Adegenet 1.3-1: new tools for the analysis of genome-wide SNP data. Bioinformatics. 2011;27:3070–1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones MR, Good JM. Targeted capture in evolutionary and ecological genomics. Mol Ecol. 2016;25:185–202.

    Article  PubMed  Google Scholar 

  • Kardos M, Luikart G, Allendorf FW. Measuring individual inbreeding in the age of genomics: marker-based measures are better than pedigrees. Heredity. 2015;115:63–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kardos M, Taylor HR, Ellegren H, Luikart G, Allendorf FW. Genomics advances the study of inbreeding depression in the wild. Evol Appl. 2016;9:1205–18.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kardos M, Qvarnstrom A, Ellegren H. Inferring individual inbreeding and demographic history from segments of identity by descent in Ficedula flycatcher genome sequences. Genetics. 2017;205:1319–34.

    Article  PubMed  PubMed Central  Google Scholar 

  • Keller LF, Waller DM. Inbreeding effects in wild populations. Trends Ecol Evol. 2002;17:230–41.

    Article  Google Scholar 

  • Keller MC, Visscher PM, Goddard ME, Rosenberg NA. Quantification of inbreeding due to distant ancestors and its detection using dense single nucleotide polymorphism data. Genetics. 2011;189:237–49.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kemppainen P, Knight CG, Sarma DK, Hlaing T, Prakash A, Maung Maung YN, et al. Linkage disequilibrium network analysis (LDna) gives a global view of chromosomal inversions, local adaptation and geographic structure. Mol Ecol Resour. 2015;15:1031–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirin M, McQuillan R, Franklin CS, Campbell H, McKeigue PM, Wilson JF. Genomic runs of homozygosity record population history and consanguinity. PLoS One. 2010;5:e13996.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kohn MH, Murphy WJ, Ostrander EA, Wayne RK. Genomics and conservation genetics. Trends Ecol Evol. 2006;21:629–37.

    Article  PubMed  Google Scholar 

  • Kovach RP, Hand BK, Hohenlohe PA, Cosart TF, Boyer MC, Neville HH, et al. Vive la résistance: genome-wide selection against introduced alleles in invasive hybrid zones. Proc R Soc B Biol Sci. 2016a;283:20161380.

    Article  Google Scholar 

  • Kovach RP, Luikart G, Lowe WH, Boyer MC. Risk and efficacy of human-enabled interspecific hybridization for climate-change adaptation: response to Hamilton and Miller (2016). Conserv Biol. 2016b;30:428–30.

    Article  PubMed  Google Scholar 

  • Kristensen TN, Pedersen KS, Vermeulen CJ, Loeschcke V. Research on inbreeding in the “omic” era. Trends Ecol Evol. 2010;25:44–52.

    Article  PubMed  Google Scholar 

  • Kronenberger JA, Funk WC, Smith JW, Fitzpatrick SW, Angeloni LM, Broder ED, et al. Testing the demographic effects of divergent immigrants on small populations of Trinidadian guppies. Anim Conserv. 2017a;20:3–11.

    Google Scholar 

  • Kronenberger JA, Fitzpatrick SW, Angeloni LM, Broder ED, Ruell EW, Funk WC. Playing God with guppies – informing tough conservation decisions using a model experimental system. Anim Conserv. 2017b;20:18–9.

    Article  Google Scholar 

  • Kronenberger JA, Gerberich JC, Fitzpatrick SW, Broder ED, Angeloni LM, Funk WC. An experimental test of alternative population augmentation scenarios. Conserv Biol. 2018;32:838–48.

    Google Scholar 

  • Leberg PL, Firmin BD. Role of inbreeding depression and purging in captive breeding and restoration programmes. Mol Ecol. 2008;17:334–43.

    Article  PubMed  Google Scholar 

  • Lemmon AR, Emme SA, Lemmon EM. Anchored hybrid enrichment for massively high-throughput phylogenomics. Syst Biol. 2012;61:727–44.

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Lorenzen ED, Fumagalli M, Li B, Harris K, Xiong Z, et al. Population genomics reveal recent speciation and rapid evolutionary adaptation in polar bears. Curr Biol. 2014;157:785–94.

    CAS  Google Scholar 

  • Lotterhos KE, Whitlock MC. Evaluation of demographic history and neutral parameterization on the performance of FST outlier tests. Mol Ecol. 2014;23:2178–92.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lowry DB, Hoban S, Kelley JL, Lotterhos KE, Reed LK, Antolin MF, et al. Breaking RAD: an evaluation of the utility of restriction site-associated DNA sequencing for genome scans of adaptation. Mol Ecol Resour. 2016.

    Google Scholar 

  • Madsen T, Ujvari B, Olsson M. Novel genes continue to enhance population growth in adders (Vipera berus). Biol Conserv. 2004;120:145–7.

    Article  Google Scholar 

  • McCullough DR, Fischer JK, Ballou JD. From bottleneck to metapopulation: recovery of the tule elk in California. In: Metapopulations and wildlife conservation. Washington: Island Press; 1996.

    Google Scholar 

  • Meek MH, Wells C, Tomalty KM, Ashander J, Cole EM, Gille DA, et al. Fear of failure in conservation: the problem and potential solutions to aid conservation of extremely small populations. Biol Conserv. 2015;184:209–17.

    Article  Google Scholar 

  • Meirmans PG. The trouble with isolation by distance. Mol Ecol. 2012;21:2839–46.

    Article  PubMed  Google Scholar 

  • Miller JM, Hamilton JA. Interspecies hybridization in the conservation toolbox: response to Kovach et al. (2016). Conserv Biol. 2016;30:431–3.

    Article  PubMed  Google Scholar 

  • Miller JM, Poissant J, Hogg JT, Coltman DW. Genomic consequences of genetic rescue in an insular population of bighorn sheep (Ovis canadensis). Mol Ecol. 2012;21:1583–96.

    Article  CAS  PubMed  Google Scholar 

  • Miller JM, Malenfant RM, David P, Davis CS, Poissant J, Hogg JT, et al. Estimating genome-wide heterozygosity: effects of demographic history and marker type. Heredity. 2014;112:240–7.

    Article  CAS  PubMed  Google Scholar 

  • Mills LS, Allendorf FW. The one-migrant-per-generation rule in conservation and management. Conserv Biol. 1996;10:1509–18.

    Article  Google Scholar 

  • Muhlfeld CC, Kalinowski ST, McMahon TE, Taper ML, Painter S, Leary RF, et al. Hybridization rapidly reduces fitness of a native trout in the wild. Biol Lett. 2009;5:328–31.

    Article  PubMed  PubMed Central  Google Scholar 

  • Newman D, Pilson D. Increased probability of extinction due to decreased genetic effective population size: experimental populations of Clarkia pulchella. Evolution. 1997;51:354–62.

    Article  PubMed  Google Scholar 

  • Nielsen R. Molecular signatures of natural selection. Annu Rev Genet. 2005;39:197–218.

    Article  CAS  PubMed  Google Scholar 

  • Ouborg NJ, Pertoldi C, Loeschcke V, Bijlsma RK, Hedrick PW. Conservation genetics in transition to conservation genomics. Trends Genet. 2010;26:177–87.

    Article  CAS  PubMed  Google Scholar 

  • Paige KN. The functional genomics of inbreeding depression: a new approach to an old problem. Bioscience. 2010;60:267–77.

    Article  Google Scholar 

  • Pante E, Abdelkrim J, Viricel A, Gey D, France SC, Boisselier MC, et al. Use of RAD sequencing for delimiting species. Heredity. 2014;114:450–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Patterson N, Price AL, Reich D. Population structure and eigenanalysis. PLoS Genet. 2006;2:e190.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pemberton J. Measuring inbreeding depression in the wild: the old ways are the best. Trends Ecol Evol. 2004;19:613–5.

    Article  PubMed  Google Scholar 

  • Pemberton JM. Wild pedigrees: the way forward. Proc R Soc B Biol Sci. 2008;275:613–21.

    Article  CAS  Google Scholar 

  • Peñalba JV, Smith LL, Tonione MA, Sass C, Hykin SM, Skipwith PL, et al. Sequence capture using PCR-generated probes: a cost-effective method of targeted high-throughput sequencing for nonmodel organisms. Mol Ecol Resour. 2014;14:1000–10.

    PubMed  Google Scholar 

  • Pickrell JK, Pritchard JK. Inference of population splits and mixtures from genome-wide allele frequency data. PLoS Genet. 2012;8:e1002967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pierson JC, Coates DJ, Oostermeijer JGB, Beissinger SR, Bragg JG, Sunnucks P, et al. Genetic factors in threatened species recovery plans on three continents. Front Ecol Environ. 2016;14:433–40.

    Article  Google Scholar 

  • Pool JE, Hellmann I, Jensen JD, Nielsen R. Population genetic inference from genomic sequence variation. Genome Res. 2010;20:291–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000;155:945–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81:559–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rellstab C, Gugerli F, Eckert AJ, Hancock AM, Holderegger R. A practical guide to environmental association analysis in landscape genomics. Mol Ecol. 2015;24:4348–70.

    Article  PubMed  Google Scholar 

  • Rieseberg LH. Chromosomal rearrangements and speciation. Trends Ecol Evol. 2001;16:351–8.

    Article  PubMed  Google Scholar 

  • Robinson JA, Ortega-Del Vecchyo D, Fan Z, Kim BY, vonHoldt BM, Marsden CD, et al. Genomic flatlining in the endangered Island fox. Curr Biol. 2016;26:1183–9.

    Article  CAS  PubMed  Google Scholar 

  • Rohland N, Reich D, Mallick S, Meyer M, Green RE, Georgiadis NJ, et al. Genomic DNA sequences from mastodon and woolly mammoth reveal deep speciation of forest and savanna elephants. PLoS Biol. 2010;8:e1000564.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saccheri I, Kuussaari M, Kankare M, Vikman P, Fortelius W, Hanski I. Inbreeding and extinction in a butterfly metapopulation. Nature. 1998;392:491–4.

    Article  CAS  Google Scholar 

  • Schou MF, Bechsgaard J, Muñoz J, Kristensen TN. Genome-wide regulatory deterioration impedes adaptive responses to stress in inbred populations of Drosophila melanogaster. Evolution. 2018;72:1614–28.

    Article  CAS  Google Scholar 

  • Schwartz MK, Luikart G, Waples RS. Genetic monitoring as a promising tool for conservation and management. Trends Ecol Evol. 2007;22:25–33.

    Article  PubMed  Google Scholar 

  • Slate J, David P, Dodds KG, Veenvliet BA, Glass BC. Understanding the relationship between the inbreeding coefficient and multilocus heterozygosity: theoretical expectations and empirical data. Mol Ecol. 2004;93:255–65.

    CAS  Google Scholar 

  • Spieth PT. Gene flow and genetic differentiation. Genetics. 1974;78:961–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stoffel MA, Esser M, Kardos M, Humble E, Nichols H, David P, et al. inbreedR: an R package for the analysis of inbreeding based on genetic markers. Methods Ecol Evol. 2016;7:1331–9.

    Article  Google Scholar 

  • Storfer A. Gene flow and endangered species translocations: a topic revisited. Biol Conserv. 1999;87:173–80.

    Article  Google Scholar 

  • Stuglik MT, Radwan J, Babik W. jMHC: software assistant for multilocus genotyping of gene families using next-generation amplicon sequencing. Mol Ecol Resour. 2011;11:739–42.

    Article  CAS  PubMed  Google Scholar 

  • Sukumaran J, Knowles LL. Multispecies coalescent delimits structure, not species. PNAS. 2017;114:1607–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szulkin M, Bierne N, David P. Heterozygosity-fitness correlations: a time for reappraisal. Evolution. 2010;64:1202–17.

    PubMed  Google Scholar 

  • Tallmon DA. Get a move on: the value of rescue. Anim Conserv. 2017;20:16–7.

    Article  Google Scholar 

  • Tallmon DA, Luikart G, Waples RS. The alluring simplicity and complex reality of genetic rescue. Trends Ecol Evol. 2004;19:489–96.

    Article  PubMed  Google Scholar 

  • Thomas MA, Roemer GW, Donlan CJ, Dickson BG, Matocq M, Malaney J. Gene tweaking for conservation. Nature. 2013;501:485–6.

    Article  PubMed  Google Scholar 

  • Weese DJ, Schwartz AK, Bentzen P, Hendry AP, Kinnison MT. Eco-evolutionary effects on population recovery following catastrophic disturbance. Evol Appl. 2011;4:354–66.

    Article  PubMed  PubMed Central  Google Scholar 

  • Westemeier RL. Tracking the long-term decline and recovery of an isolated population. Science. 1998;282:1695–8.

    Article  CAS  PubMed  Google Scholar 

  • White M. Modes of speciation. San Francisco: W.H. Freeman; 1978.

    Google Scholar 

  • Whiteley AR, Fitzpatrick SW, Funk WC, Tallmon DA. Genetic rescue to the rescue. Trends Ecol Evol. 2015;30:42–9.

    Article  PubMed  Google Scholar 

  • Willi Y, Van Buskirk J, Hoffmann AA. Limits to the adaptive potential of small populations. Annu Rev Ecol Evol Syst. 2006;37:433–58.

    Article  Google Scholar 

  • Wright S. Coefficients of inbreeding and relationship. Am Nat. 1922;56:330–8.

    Article  Google Scholar 

  • Wright S. Evolution in Mendelian populations. Genetics. 1931;16:0097–159.

    Article  CAS  Google Scholar 

  • Zhang C, Rannala B, Yang Z. Bayesian species delimitation can be robust to guide-tree inference errors. Syst Biol. 2014;63:993–1004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu B, Ashley-Koch AE, Dunson DB. Generalized admixture mapping for complex traits. G3: Genes Genomes Genetics. 2013;3:1165–75.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zuk M, Rotenberry JT, Tinghitella RM. Silent night: adaptive disappearance of a sexual signal in a parasitized population of field crickets. Biol Lett. 2006;2:521–4.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah W. Fitzpatrick .

Editor information

Editors and Affiliations

Glossary

Absolute fitness

Mean number of offspring per capita, measured as population growth rate or abundance.

Assisted gene flow

Managed movement of individuals into populations to reduce local maladaptation to climate or other environmental change.

Demographic rescue

An increase in population growth caused by the addition of new individuals.

Evolutionary rescue

An increase in population growth resulting from adaptation to otherwise extinction-causing environmental stress from standing genetic variation, de novo mutation, or gene flow.

Genetic load

The reduction in mean fitness of members of a population owing to deleterious genes, or gene combinations, in the population.

Genetic rescue

An increase in population growth owing to immigration of new alleles beyond the demographic contribution of immigrants themselves.

Genetic restoration

An increase in genetic variation and relative, but not absolute, fitness owing to immigration of new alleles.

Identical by descent (IBD)

A matching segment of DNA shared by two or more individuals that has been inherited from a common ancestor without any intervening recombination.

Inbreeding

Mating between related individuals which results in an increase of homozygosity in the progeny because they possess alleles that are identical by descent.

Inbreeding depression

The relative reduction in fitness of progeny from matings between related individuals compared with progeny from unrelated individuals.

Outbreeding depression

Reduced fitness of offspring from matings between genetically divergent individuals.

Runs of homozygosity (ROH)

Stretches of homozygous genotypes at mapped SNPs.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fitzpatrick, S.W., Funk, W.C. (2019). Genomics for Genetic Rescue. In: Hohenlohe, P.A., Rajora, O.P. (eds) Population Genomics: Wildlife. Population Genomics. Springer, Cham. https://doi.org/10.1007/13836_2019_64

Download citation

  • DOI: https://doi.org/10.1007/13836_2019_64

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63488-9

  • Online ISBN: 978-3-030-63489-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics