Skip to main content

Ex Situ Wildlife Conservation in the Age of Population Genomics

  • Chapter
  • First Online:
Population Genomics: Wildlife

Part of the book series: Population Genomics ((POGE))

Abstract

As the loss of biodiversity accelerates, there is general recognition that managing species outside of their native range (ex situ) will become increasingly important as populations continue to decline. Well-grounded in population genetic theory, ex situ conservation strategies, such as captive breeding, have largely relied on pedigree-based management out of both necessity and preference, despite known violations of important assumptions. Since the advent of molecular markers, many studies have successfully used empirical genetic data for informing ex situ conservation, yet their utility has been questioned due to competing priorities and resources as well as concerns related to potential biases associated with estimating individual- and population-level parameters based on traditional suites of loci. Paired with modern genotyping-by-sequencing approaches, population genomics holds great promise for overcoming past limitations associated with the use of empirical genetic data in ex situ conservation, allowing for highly precise estimates of population genetic parameters and identification of specific loci underlying traits of interest. Here, we review available literature and discuss the clear advantages and ultimate potential of using genome-wide data when managing species outside of their native range, from refining breeding decisions and assessing lineage integrity to minimizing adaptation to the captive environment and informing interactive in situ/ex situ conservation strategies. With resource-driven and capacity-related barriers to adoption falling away, our ability to harness leading-edge technologies to mine the genomes of wildlife species will enable more effective and efficient planning, implementation and monitoring of ex situ conservation strategies moving forward.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott RJ, Barton NH, Good JM. Genomics of hybridization and its evolutionary consequences. Mol Ecol. 2016;25:2325–32.

    PubMed  Google Scholar 

  • Allendorf FW. Genetic drift and the loss of alleles versus heterozygosity. Zoo Biol. 1986;5:181–90.

    Google Scholar 

  • Allendorf FW, Hohenlohe PA, Luikart G. Genomics and the future of conservation genetics. Nat Rev Genet. 2010;11:697–709.

    PubMed  CAS  Google Scholar 

  • Andrews KR, Good JM, Miller MR, Luikart G, Hohenlohe PA. Harnessing the power of RADseq for ecological and evolutionary genomics. Nat Rev Genet. 2016;17:81.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Araki H, Cooper B, Blouin MS. Genetic effects of captive breeding cause a rapid, cumulative fitness decline in the wild. Science. 2007;318:100–3.

    PubMed  CAS  Google Scholar 

  • Attard C, Moller LM, Sasaki M, Hammer MP, Bice CM, Brauer CJ, et al. A novel holistic framework for genetic-based captive-breeding and reintroduction programs. Conserv Biol. 2016;30:1060–9.

    PubMed  CAS  Google Scholar 

  • Baird NA, Etter PD, Atwood TS, Currey MC, Shiver AL, Lewis ZA, et al. Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS One. 2008;3:e3376.

    PubMed  PubMed Central  Google Scholar 

  • Ballou JD. Calculating inbreeding coefficients from pedigrees. In: Schonewald-Cox CM, Chambers SM, MacBryde B, Thomas WL, editors. Genetics and conservation: a reference for managing wild animal and plant populations. Menlo Park, CA: The Benjamin/Cummings Publishing Company, Inc; 1983. p. 509–21.

    Google Scholar 

  • Ballou JD, Lacy RC. Identifying genetically important individuals for management of genetic variation in pedigreed populations. In: Ballou JD, Gilpin M, Foose TJ, editors. Population management for survival and recovery. New York, NY: Columbia University Press; 1995. p. 76–111.

    Google Scholar 

  • Balmford A, Leader-Williams N, Green M. Parks or arks: where to conserve threatened mammals? Biodivers Conserv. 1995;4:595–607.

    Google Scholar 

  • Beck BB, Rapaport LG, Price MRS, Wilson AC. Reintroduction of captive-born animals. In: Olney PJS, Mace GM, Feistner ATC, editors. Creative conservation: interactive management of wild and captive animals. Dordrecht, The Netherlands: Springer; 1994. p. 265–86.

    Google Scholar 

  • Beheregaray LB, Pfeiffer LV, Attard CR, Sandoval-Castillo J, Domingos FM, Faulks LK, et al. Genome-wide data delimits multiple climate-determined species ranges in a widespread Australian fish, the golden perch (Macquaria ambigua). Mol Phylogenet Evol. 2017;111:65–75.

    PubMed  Google Scholar 

  • Benirschke K. The frozen zoo concept. Zoo Biol. 1984;3:325–8.

    Google Scholar 

  • Black AN, Seears HA, Hollenbeck CM, Samollow PB. Rapid genetic and morphologic divergence between captive and wild populations of the endangered Leon Springs pupfish, Cyprinodon bovinus. Mol Ecol. 2017;26:2237–56.

    PubMed  CAS  Google Scholar 

  • Blouin M, Parsons M, Lacaille V, Lotz S. Use of microsatellite loci to classify individuals by relatedness. Mol Ecol. 1996;5:393–401.

    PubMed  CAS  Google Scholar 

  • Bowkett AE. Recent captive-breeding proposals and the return of the ark concept to global species conservation. Conserv Biol. 2009;23:773–6.

    PubMed  Google Scholar 

  • Campbell NR, Harmon SA, Narum SR. Genotyping-in-thousands by sequencing (GT-seq): a cost effective SNP genotyping method based on custom amplicon sequencing. Mol Ecol Resour. 2015;15:855–67.

    PubMed  CAS  Google Scholar 

  • CBSG. Tasmanian devil PHVA final report. Apple Valley: IUCN/SSC Conservation Breeding Specialist Group; 2008.

    Google Scholar 

  • Champagnon J, Elmberg J, Guillemain M, Gauthier-Clerc M, Lebreton J-D. Conspecifics can be aliens too: a review of effects of restocking practices in vertebrates. J Nat Conserv. 2012;20:231–41.

    Google Scholar 

  • Christie MR, Marine ML, French RA, Blouin MS. Genetic adaptation to captivity can occur in a single generation. Proc Natl Acad Sci U S A. 2012;109:238–42.

    PubMed  CAS  Google Scholar 

  • Christie MR, Marine ML, Fox SE, French RA, Blouin MS. A single generation of domestication heritably alters the expression of hundreds of genes. Nat Commun. 2016;7.

    Google Scholar 

  • Çilingir FG, Rheindt FE, Garg KM, Platt K, Platt SG, Bickford DP. Conservation genomics of the endangered Burmese roofed turtle. Conserv Biol. 2017;31:1469–76.

    PubMed  Google Scholar 

  • Clarke CN, Fraser DJ, Purchase CF. Lifelong and carry-over effects of early captive exposure in a recovery program for Atlantic salmon (Salmo salar). Anim Conserv. 2016;19:350–9.

    Google Scholar 

  • Conway WG. The practical difficulties and financial implications of endangered species breeding programmes. Int Zoo Yearb. 1986;24:210–9.

    Google Scholar 

  • Csilléry K, Johnson T, Beraldi D, Clutton-Brock T, Coltman D, Hansson B, et al. Performance of marker-based relatedness estimators in natural populations of outbred vertebrates. Genetics. 2006;173:2091–101.

    PubMed  PubMed Central  Google Scholar 

  • Darwin C. The variation of animals and plants under domestication. London: John Murray; 1868.

    Google Scholar 

  • Davey JW, Hohenlohe PA, Etter PD, Boone JQ, Catchen JM, Blaxter ML. Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat Rev Genet. 2011;12:499–510.

    CAS  Google Scholar 

  • De Bois H, Dhondt A, Van Puijenbroeck B. Effects of inbreeding on juvenile survival of the okapi Okapia johnstoni in captivity. Biol Conserv. 1990;54:147–55.

    Google Scholar 

  • Der Sarkissian C, Ermini L, Schubert M, Yang MA, Librado P, Fumagalli M, et al. Evolutionary genomics and conservation of the endangered Przewalski’s horse. Curr Biol. 2015;25:2577–83.

    Google Scholar 

  • Derrickson SR, Snyder NF. Potentials and limits of captive breeding in parrot conservation. New world parrots in crisis. Washington, DC: Smithsonian Institution Press; 1992. p. 133–63.

    Google Scholar 

  • Edwards T, Berry KH. Are captive tortoises a reservoir for conservation? An assessment of genealogical affiliation of captive Gopherus agassizii to local, wild populations. Conserv Genet. 2013;14:649–59.

    Google Scholar 

  • Ensslin A, Tschope O, Burkart M, Joshi J. Fitness decline and adaptation to novel environments in ex situ plant collections: current knowledge and future perspectives. Biol Conserv. 2015;192:394–401.

    Google Scholar 

  • Etter P, Bassham S, Hohenlohe PA, Johnson E, Cresko W. SNP discovery and genotyping for evolutionary genetics using RAD sequencing. Methods Mol Biol. 2011;772:157–78.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Fischer J, Lindenmayer DB. An assessment of the published results of animal relocations. Biol Conserv. 2000;96:1–11.

    Google Scholar 

  • Flesness NR. Gene pool conservation and computer analysis. Int Zoo Yearb. 1977;17:77–81.

    Google Scholar 

  • Foose T, Flesness N, Seal U, De Boer B, Rabb G. Ark into the 21st century. Apple Valley, MN: International Union for the Conservation of Nature and Natural Resources/Captive Breeding Specialist Group; 1992.

    Google Scholar 

  • Frankham R. Genetic adaptation to captivity in species conservation programs. Mol Ecol. 2008;17:325–33.

    PubMed  Google Scholar 

  • Frankham R. Challenges and opportunities of genetic approaches to biological conservation. Biol Conserv. 2010;143:1919–27.

    Google Scholar 

  • Frankham R, Loebel DA. Modeling problems in conservation genetics using captive Drosophila populations: rapid genetic adaptation to captivity. Zoo Biol. 1992;11:333–42.

    Google Scholar 

  • Frankham R, Ballou JD, Eldridge MD, Lacy RC, Ralls K, Dudash MR, et al. Predicting the probability of outbreeding depression. Conserv Biol. 2011;25:465–75.

    PubMed  Google Scholar 

  • Fraser DJ. How well can captive breeding programs conserve biodiversity? A review of salmonids. Evol Appl. 2008;1:535–86.

    PubMed  PubMed Central  Google Scholar 

  • Frazer NB. Sea turtle conservation and halfway technology. Conserv Biol. 1992;6:179–84.

    Google Scholar 

  • Gonçalves da Silva A, Lalonde DR, Quse V, Shoemaker A, Russello MA. Genetic approaches refine ex situ lowland tapir (Tapirus terrestris) conservation. J Hered. 2010;101:581–90.

    PubMed  Google Scholar 

  • Grossen C, Biebach I, Angelone-Alasaad S, Keller LF, Croll D. Population genomics analyses of European ibex species show lower diversity and higher inbreeding in reintroduced populations. Evol Appl. 2018;11:123–39.

    PubMed  CAS  Google Scholar 

  • Gruenthal KM, Witting DA, Ford T, Neuman MJ, Williams JP, Pondella DJ, et al. Development and application of genomic tools to the restoration of green abalone in southern California. Conserv Genet. 2014;15:109–21.

    Google Scholar 

  • Hammerly SC, de la Cerda DA, Bailey H, Johnson JA. A pedigree gone bad: increased offspring survival after using DNA-based relatedness to minimize inbreeding in a captive population. Anim Conserv. 2016;19:296–303.

    Google Scholar 

  • Hayes BJ, Lewin HA, Goddard ME. The future of livestock breeding: genomic selection for efficiency, reduced emissions intensity, and adaptation. Trends Genet. 2013;29:206–14.

    PubMed  CAS  Google Scholar 

  • Heath DD, Heath JW, Bryden CA, Johnson RM, Fox CW. Rapid evolution of egg size in captive salmon. Science. 2003;299:1738–40.

    PubMed  CAS  Google Scholar 

  • Hedrick PW. Conservation genetics: where are we now? Trends Ecol Evol. 2001;16:629–36.

    Google Scholar 

  • Henkel JR, Jones KL, Hereford SG, Savoie ML, Leibo S, Howard JJ. Integrating microsatellite and pedigree analyses to facilitate the captive management of the endangered Mississippi sandhill crane (Grus canadensis pulla). Zoo Biol. 2012;31:322–35.

    PubMed  Google Scholar 

  • Henry P, Miquelle D, Sugimoto T, McCullough DR, Caccone A, Russello MA. In situ population structure and ex situ representation of the endangered Amur tiger. Mol Ecol. 2009;18:3173–84.

    PubMed  CAS  Google Scholar 

  • Hoeck PEA, Wolak ME, Switzer RA, Kuehler CM, Lieberman AA. Effects of inbreeding and parental incubation on captive breeding success in Hawaiian crows. Biol Conserv. 2015;184:357–64.

    Google Scholar 

  • Hoffman JI, Simpson F, David P, Rijks JM, Kuiken T, Thorne MA, et al. High-throughput sequencing reveals inbreeding depression in a natural population. Proc Natl Acad Sci U S A. 2014;111(10):3775–80.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Howard JG, Lynch C, Santymire RM, Marinari PE, Wildt DE. Recovery of gene diversity using long-term cryopreserved spermatozoa and artificial insemination in the endangered black-footed ferret. Anim Conserv. 2016;19:102–11.

    Google Scholar 

  • Ishtiaq F, Prakash V, Green RE, Johnson J. Management implications of genetic studies for ex situ populations of three critically endangered Asian Gyps vultures. Anim Conserv. 2015;18:259–70.

    Google Scholar 

  • IUCN. The IUCN policy statement on captive breeding. Gland, Switzerland: IUCN; 1987.

    Google Scholar 

  • Ivy JA, Miller A, Lacy RC, DeWoody JA. Methods and prospects for using molecular data in captive breeding programs: an empirical example using parma wallabies (Macropus parma). J Hered. 2009;100:441–54.

    PubMed  Google Scholar 

  • Ivy JA, Putnam AS, Navarro AY, Gurr J, Ryder OA. Applying SNP-derived molecular coancestry estimates to captive breeding programs. J Hered. 2016;107:403–12.

    PubMed  CAS  Google Scholar 

  • Jensen EL, Tapia W, Caccone A, Russello MA. Genetics of a head-start program to guide conservation of an endangered Galápagos tortoise (Chelonoidis ephippium). Conserv Genet. 2015;16:823–32.

    Google Scholar 

  • Jensen EL, Edwards DL, Garrick RC, Miller JM, Gibbs JP, Cayot LJ, et al. Population genomics through time provides insights into the consequences of decline and rapid demographic recovery through head-starting in a Galapagos giant tortoise. Evol Appl 2018 (in press). https://doi.org/10.1111/eva.12682

  • Johnson JA, Altwegg R, Evans DM, Ewen JG, Gordon IJ, Pettorelli N, et al. Is there a future for genome-editing technologies in conservation? Anim Conserv. 2016;19:97–101.

    Google Scholar 

  • Jones KL, Glenn TC, Lacy RC, Pierce JR, Unruh N, Mirande CM, et al. Refining the whooping crane studbook by incorporating microsatellite DNA and leg-banding analyses. Conserv Biol. 2002;16:789–99.

    Google Scholar 

  • Kleinman-Ruiz D, Martínez-Cruz B, Soriano L, Lucena-Perez M, Cruz F, Villanueva B, et al. Novel efficient genome-wide SNP panels for the conservation of the highly endangered Iberian lynx. BMC Genomics. 2017;18:556.

    PubMed  PubMed Central  Google Scholar 

  • Knief U, Schielzeth H, Backström N, Hemmrich-Stanisak G, Wittig M, Franke A, et al. Association mapping of morphological traits in wild and captive zebra finches: reliable within, but not between populations. Mol Ecol. 2017;26:1285–305.

    PubMed  CAS  Google Scholar 

  • Kraaijeveld-Smit FJL, Griffiths RA, Moore RD, Beebee TJC. Captive breeding and the fitness of reintroduced species: a test of the responses to predators in a threatened amphibian. J Appl Ecol. 2006;43:360–5.

    Google Scholar 

  • Krohn AR, Conroy CJ, Pesapane R, Bi K, Foley JE, Rosenblum EB. Conservation genomics of desert dwelling California voles (Microtus californicus) and implications for management of endangered Amargosa voles (Microtus californicus scirpensis). Conserv Genet. 2018;19:383–95.

    Google Scholar 

  • Kyle R, Beatty GE, Roberts D, Provan J. Using genetic monitoring to inform best practice in a captive breeding programme: inbreeding and potential genetic rescue in the freshwater pearl mussel Margaritifera margaritifera. Conserv Genet. 2016;17:1323–32.

    Google Scholar 

  • Lacy RC. Loss of genetic diversity from managed populations: interacting effects of drift, mutation, immigration, selection, and population subdivision. Conserv Biol. 1987;1:143–58.

    Google Scholar 

  • Lacy RC. Clarification of genetic terms and their use in the management of captive populations. Zoo Biol. 1995;14:565–77.

    Google Scholar 

  • Lermen D, Bloemeke B, Browne R, Clarke A, Dyce PW, Fixemer T, et al. Cryobanking of viable biomaterials: implementation of new strategies for conservation purposes. Mol Ecol. 2009;18:1030–3.

    PubMed  Google Scholar 

  • Lewis OT, Thomas CD. Adaptations to captivity in the butterfly Pieris brassicae (L.) and the implications for ex situ conservation. J Insect Conserv. 2001;5:55–63.

    Google Scholar 

  • Linnarsson S, Teichmann SA. Single-cell genomics: coming of age. Genome Biol. 2016;17:1–3.

    Google Scholar 

  • Luikart G, England PR, Tallmon D, Jordan S, Taberlet P. The power and promise of population genomics: from genotyping to genome typing. Nat Rev Genet. 2003;4:981–94.

    PubMed  CAS  Google Scholar 

  • MacCluer JW, VandeBerg JL, Read B, Ryder OA. Pedigree analysis by computer simulation. Zoo Biol. 1986;5:147–60.

    Google Scholar 

  • Martin MD, Jay F, Castellano S, Slatkin M. Determination of genetic relatedness from low-coverage human genome sequences using pedigree simulations. Mol Ecol. 2017;26(16):4145–57.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Meffe GK. Techno-arrogance and halfway technologies: Salmon hatcheries on the Pacific coast of North America. Conserv Biol. 1992;6:350–4.

    Google Scholar 

  • Milián-García Y, Jensen EL, Madsen J, Álvarez Alonso S, Serrano Rodríguez A, Espinosa López G, et al. Founded: genetic reconstruction of lineage diversity and kinship informs ex situ conservation of Cuban Amazon parrots (Amazona leucocephala). J Hered. 2015a;106:573–9.

    PubMed  Google Scholar 

  • Milián-García Y, Ramos-Targarona R, Perez-Fleitas E, Sosa-Rodriguez G, Guerra-Manchena L, Alonso-Tabet M, et al. Genetic evidence of hybridization between the critically endangered Cuban crocodile and the American crocodile: implications for population history and in situ/ex situ conservation. Heredity. 2015b;114:272–80.

    PubMed  Google Scholar 

  • Miller JM, Quinzin MC, Poulakakis N, Gibbs JP, Beheregaray LB, Garrick RC, et al. Identification of genetically important individuals of the rediscovered Floreana Galápagos giant tortoise (Chelonoidis elephantopus) provide founders for Species Restoration Program. Sci Rep. 2017;7:11471.

    PubMed  PubMed Central  Google Scholar 

  • Mitchell AA, Lau J, Chemnick LG, Thompson EA, Alberts AC, Ryder OA, et al. Using microsatellite diversity in wild Anegada iguanas (Cyclura pinguis) to establish relatedness in a captive breeding group of this critically endangered species. Conserv Genet. 2011;12:771–81.

    Google Scholar 

  • Myers N. The sinking ark: a new look at the problem of disappearing species. Oxford, UK: Pergamon Press; 1979. 307 p.

    Google Scholar 

  • Narum SR, Buerkle CA, Davey JW, Miller MR, Hohenlohe PA. Genotyping-by-sequencing in ecological and conservation genomics. Mol Ecol. 2013;22:2841–7.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Oliveira R, Randi E, Mattucci F, Kurushima JD, Lyons LA, Alves PC. Toward a genome-wide approach for detecting hybrids: informative SNPs to detect introgression between domestic cats and European wildcats (Felis silvestris). Heredity. 2015;115:195–205.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Oliveira PRR, Costa MC, Silveira LF, Francisco MR. Genetic guidelines for captive breeding and reintroductions of the endangered Black-fronted Piping Guan, Aburria jacutinga (galliformes, cracidae), an Atlantic Forest endemic. Zoo Biol. 2016;35:313–8.

    PubMed  Google Scholar 

  • Peterson BK, Weber JN, Kay EH, Fisher HS, Hoekstra HE. Double digest RADseq: an inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLoS One. 2012;7:e37135.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Philippart JC. Is captive breeding an effective solution for the preservation of endemic species? Biol Conserv. 1995;72:281–95.

    Google Scholar 

  • Pimm SL, Jenkins CN, Abell R, Brooks TM, Gittleman JL, Joppa LN, et al. The biodiversity of species and their rates of extinction, distribution, and protection. Science. 2014;344:1246752.

    PubMed  CAS  Google Scholar 

  • Price MR, Sischo D, Pascua MA, Hadfield MG. Demographic and genetic factors in the recovery or demise of ex situ populations following a severe bottleneck in fifteen species of Hawaiian tree snails. PeerJ. 2015;3:e1406.

    PubMed  PubMed Central  Google Scholar 

  • Rahbek C. Captive breeding – a useful tool in the preservation of biodiversity? Biodivers Conserv. 1993;2:426–37.

    Google Scholar 

  • Ralls K, Ballou J. Extinction: lessons from zoos. In: Schonewald-Cox CM, Chambers SM, MacBryde B, Thomas WL, editors. Genetics and conservation: a reference for managing wild animal and plant populations. Menlo Park, CA: The Benjamin/Cummings Publishing Company, Inc.; 1983. p. 164–84.

    Google Scholar 

  • Ralls K, Ballou JD, Rideout BA, Frankham R. Genetic management of chondrodystrophy in California condors. Anim Conserv. 2000;3:145–53.

    Google Scholar 

  • Ray JW, King RB, Duvall MR, Robinson JW, Jaeger CP, Dreslik MJ, et al. Genetic analysis and captive breeding program design for the eastern massasauga Sistrurus catenatus catenatus. J Fish Wildl Manag. 2013;4:104–13.

    Google Scholar 

  • Ritland K. Estimators for pairwise relatedness and individual inbreeding coefficients. Genet Res. 1996;67:175–85.

    Google Scholar 

  • Russello MA, Amato G. Ex situ population management in the absence of pedigree information. Mol Ecol. 2004;13:2829–40.

    PubMed  CAS  Google Scholar 

  • Russello MA, Amato G. On the horns of a dilemma: molecular approaches refine ex situ conservation in crisis. Mol Ecol. 2007;16:2405–6.

    PubMed  Google Scholar 

  • Russello MA, Hyseni C, Gibbs JP, Cruz S, Marquez C, Tapia W, et al. Lineage identification of Galápagos tortoises in captivity worldwide. Anim Conserv. 2007;10:304–11.

    Google Scholar 

  • Russello MA, Poulakakis N, Gibbs JP, Tapia W, Benavides E, Powell JR, et al. DNA from the past informs ex situ conservation for the future: an “extinct” species of Galápagos tortoise identified in captivity. PLoS One. 2010a;5:e8683.

    PubMed  PubMed Central  Google Scholar 

  • Russello MA, Stahala C, Lalonde D, Schmidt KL, Amato G. Cryptic diversity and conservation units in the Bahama parrot. Conserv Genet. 2010b;11:1809–21.

    Google Scholar 

  • Ryder O, Miller W, Ralls K, Ballou JD, Steiner CC, Mitelberg A, et al. Whole genome sequencing of California condors is now utilized for guiding genetic management. International Plant and Animal Genome XXIV Conference; 8–13 Jan 2016, San Diego, CA, USA.

    Google Scholar 

  • Saragusty J, Diecke S, Drukker M, Durrant B, Friedrich Ben-Nun I, Galli C, et al. Rewinding the process of mammalian extinction. Zoo Biol. 2016;35:280–92.

    PubMed  Google Scholar 

  • Seal U, Foose T, Ellis S. Conservation assessment and management plans (CAMPs) and global captive action plans (GCAPs). Creative conservation: interactive management of wild and captive animals. Dordrecht, The Netherlands: Springer; 1994. p. 312–25.

    Google Scholar 

  • Snyder NFR, Derrickson SR, Beissinger SR, Wiley JW, Smith TB, Toone WD, et al. Limitations of captive breeding in endangered species recovery. Conserv Biol. 1996;10:338–48.

    Google Scholar 

  • Soulé ME, Simberloff D. What do genetics and ecology tell us about the design of nature reserves? Biol Conserv. 1986;35:19–40.

    Google Scholar 

  • Speed D, Balding DJ. Relatedness in the post-genomic era: is it still useful? Nat Rev Genet. 2015;16:33–44.

    PubMed  CAS  Google Scholar 

  • Strzala T, Kowalczyk A, Lukaszewicz E. Reintroduction of the European capercaillie from the Capercaillie Breeding Centre in Wisla Forest District: genetic assessments of captive and reintroduced populations. PLoS One. 2015;10:13.

    Google Scholar 

  • Suzuki MM, Bird A. DNA methylation landscapes: provocative insights from epigenomics. Nat Rev Genet. 2008;9:465–76.

    PubMed  CAS  Google Scholar 

  • Svengren H, Prettejohn M, Bunge D, Fundi P, Bjorklund M. Relatedness and genetic variation in wild and captive populations of Mountain Bongo in Kenya obtained from genome-wide single-nucleotide polymorphism (SNP) data. Glob Ecol Conserv. 2017;11:196–206.

    Google Scholar 

  • Tear TH, Scott JM, Hayward PH, Griffith B. Status and prospects for success of the Endangered Species Act. Science. 1993;262:976–7.

    PubMed  CAS  Google Scholar 

  • Therkildsen NO, Palumbi SR. Practical low-coverage genomewide sequencing of hundreds of individually barcoded samples for population and evolutionary genomics in nonmodel species. Mol Ecol Resour. 2017;17:194–208.

    PubMed  CAS  Google Scholar 

  • Thompson EA. Pedigree analysis in human genetics. Baltimore: Johns Hopkins University Press; 1986.

    Google Scholar 

  • Tokarska M, Marshall T, Kowalczyk R, Wójcik J, Pertoldi C, Kristensen T, et al. Effectiveness of microsatellite and SNP markers for parentage and identity analysis in species with low genetic diversity: the case of European bison. Heredity. 2009;103:326–32.

    PubMed  CAS  Google Scholar 

  • Tudge C. Last animals at the zoo: how mass extinction can be stopped. Washington, DC: Island Press; 1992. 265 p.

    Google Scholar 

  • Tunstall T, Kock R, Vahala J, Diekhans M, Fiddes I, Armstrong J, et al. Evaluating recovery potential of the northern white rhinoceros from cryopreserved somatic cells. Genome Res. 2018;28(6):780–8.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Urano K, Tsubono K, Taniguchi Y, Matsuda H, Yamada T, Sugiyama T, et al. Genetic diversity and structure in the Sado captive population of the Japanese crested ibis. Zoolog Sci. 2013;30:432–8.

    PubMed  Google Scholar 

  • Valbuena-Urena E, Soler-Membrives A, Steinfartz S, Alonso M, Carbonell F, Larios-Martin R, et al. Getting off to a good start? Genetic evaluation of the ex situ conservation project of the Critically Endangered Montseny brook newt (Calotriton arnoldi). PeerJ. 2017;5:25.

    Google Scholar 

  • Van de Casteele T, Galbusera P, Matthysen E. A comparison of microsatellite-based pairwise relatedness estimators. Mol Ecol. 2001;10:1539–49.

    PubMed  Google Scholar 

  • Waters CD, Hard JJ, Brieuc MSO, Fast DE, Warheit KI, Waples RS, et al. Effectiveness of managed gene flow in reducing genetic divergence associated with captive breeding. Evol Appl. 2015;8:956–71.

    PubMed  PubMed Central  Google Scholar 

  • West R, Potter S, Taggart D, Eldridge MDB. Looking back to go forward: genetics informs future management of captive and reintroduced populations of the black-footed rock-wallaby Petrogale lateralis. Conserv Genet. 2018;19:235–47.

    Google Scholar 

  • Willoughby JR, Ivy JA, Lacy RC, Doyle JM, DeWoody JA. Inbreeding and selection shape genomic diversity in captive populations: implications for the conservation of endangered species. PLoS One. 2017;12.

    Google Scholar 

  • Witzenberger KA, Hochkirch A. The genetic integrity of the ex situ population of the European wildcat (Felis silvestris silvestris) is seriously threatened by introgression from domestic cats (Felis silvestris catus). PLoS One. 2014;9(8):e106083.

    PubMed  PubMed Central  Google Scholar 

  • Wright S. Systems of mating. II. The effects of inbreeding on the genetic composition of a population. Genetics. 1921;6:124–43.

    PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We thank G. Amato and P. Hohenlohe for helpful comments on the manuscript. M.A.R acknowledges the support of the National Science and Engineering Research Council of Canada Discovery program (grant # 2014-04736). E.L.J. was supported by an NSERC Postgraduate Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael A. Russello .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Russello, M.A., Jensen, E.L. (2018). Ex Situ Wildlife Conservation in the Age of Population Genomics. In: Hohenlohe, P.A., Rajora, O.P. (eds) Population Genomics: Wildlife. Population Genomics. Springer, Cham. https://doi.org/10.1007/13836_2018_44

Download citation

  • DOI: https://doi.org/10.1007/13836_2018_44

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63488-9

  • Online ISBN: 978-3-030-63489-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics