Skip to main content

The Fatigue Threshold of Rubber and Its Characterization Using the Cutting Method

  • Chapter
  • First Online:
Fatigue Crack Growth in Rubber Materials

Part of the book series: Advances in Polymer Science ((POLYMER,volume 286))

Abstract

Below a limiting value of tearing energy called the intrinsic strength or fatigue threshold (T0), cracks will not grow in rubber due to fatigue; hence, this material characteristic is important to understand from both fundamental and practical perspectives. We summarize key aspects of the fatigue threshold, including the Lake-Thomas molecular interpretation of T0 in terms of fracture of polymer network chains in crosslinked elastomers. The various testing approaches for quantifying T0 are also discussed, with a focus on the classic Lake-Yeoh cutting method which was recently revived by the introduction of a commercial testing instrument that applies this procedure, the Intrinsic Strength Analyser (ISA). A validation of the cutting method is also given by demonstrating that a 2-h test on the ISA yields a value of T0 that is essentially identical to the T0 from near-threshold fatigue crack growth (FCG) measurements that require 7.5 months of continuous testing. Compound formulation effects – polymer type, crosslink density, type and amount of reinforcing fillers, and addition of oils/plasticizers – are examined based on the limited published research in this area and our new results. At the end, some insights are offered into using the fatigue threshold to develop highly durable rubber products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bhowmick AK (1988) Threshold fracture of elastomers. J Macromol Sci Part C Polym Rev 28:339–370

    Google Scholar 

  2. Mars WV, Fatemi A (2004) Factors that affect the fatigue life of rubber: a literature survey. Rubber Chem Technol 77:391–412

    CAS  Google Scholar 

  3. Harbour RJ, Fatemi A, Mars WV (2007) The effect of a dwell period on fatigue crack growth rates in filled SBR and NR. Rubber Chem Technol 80:838–853

    CAS  Google Scholar 

  4. Stadlbauer F, Koch T, Archodoulaki V-M, Planitzer F, Fidi W, Holzner A (2013) Influence of experimental parameters on fatigue crack growth and heat build-up in rubber. Materials 6:5502–5516

    PubMed  PubMed Central  Google Scholar 

  5. Stoček R, Horst T, Reincke K (2016) Tearing energy as fracture mechanical quantity for elastomers. Adv Polym Sci 275:361–398

    Google Scholar 

  6. Lake GJ, Lindley PB (1965) The mechanical fatigue limit for rubber. J Appl Polym Sci 9:1233–1251

    Google Scholar 

  7. Lake GJ, Thomas AG (1967) The strength of highly elastic materials. Proc R Soc Lond A 300:108–119

    CAS  Google Scholar 

  8. Sakulkaew K, Thomas AG, Busfield JJC (2013) The effect of temperature on the tearing of rubber. Polym Test 32:86–93

    CAS  Google Scholar 

  9. Tsunoda K, Busfield JJC, Davies CKL, Thomas AG (2000) Effect of materials variables on the tear behaviour of a non-crystallising elastomer. J Mater Sci 35:5187–5198

    CAS  Google Scholar 

  10. Bhattacharyya S, Lodha V, Dasgupta S, Mukhopadhyay R, Guha A, Sarkar P, Saha T, Bhowmick AK (2019) Influence of highly dispersible silica filler on the physical properties, tearing energy, and abrasion resistance of tire tread compound. J Appl Polym Sci 136:47560

    Google Scholar 

  11. Andrews EH (1963) Rupture propagation in hysteresial materials: stress at a notch. J Mech Phys Solids 11:231–242

    Google Scholar 

  12. Stoček R (2021) Some revision of fatigue crack growth characteristics of rubber. In: Heinrich G, Stoček R, Kipscholl R (eds) Fatigue crack growth in rubber materials: experiments and modelling. Springer, Berlin

    Google Scholar 

  13. Zhang E, Bai R, Morelle XP, Suo Z (2018) Fatigue fracture of nearly elastic hydrogels. Soft Matter 14:3563–3571

    CAS  PubMed  Google Scholar 

  14. Legorju-Jago K, Bathias C (2002) Fatigue initiation and propagation in natural and synthetic rubbers. Int J Fatigue 24:85–92

    CAS  Google Scholar 

  15. Gent AN, Tobias RH (1982) Threshold tear strength of elastomers. J Polym Sci Polym Phys Ed 20:2051–2058

    CAS  Google Scholar 

  16. Bhowmick AK, Neogi C, Basu SP (1990) Threshold tear strength of carbon black filled rubber Vulcanizates. J Appl Polym Sci 41:917–928

    CAS  Google Scholar 

  17. Mazich KA, Samus MA, Smith CA, Rossi G (1991) Threshold fracture of lightly crosslinked networks. Macromolecules 24:2766–2769

    CAS  Google Scholar 

  18. Lake GJ, Yeoh OH (1978) Measurement of rubber cutting resistance in the absence of friction. Int J Fract 14:509–526

    CAS  Google Scholar 

  19. Robertson CG, Stoček R, Kipscholl C, Mars WV (2019) Characterizing the intrinsic strength (fatigue threshold) of natural rubber/butadiene rubber blends. Tire Sci Technol 47:292–307

    Google Scholar 

  20. Mars WV, Robertson CG, Stoček R, Kipscholl C (2019) Why cutting strength is an indicator of fatigue threshold. In: Huneau B, Le Cam J-B, Marco Y, Verron E (eds) Constitutive models for rubber XI. CRC Press, Taylor & Francis Group, London, pp 351–356

    Google Scholar 

  21. Robertson CG, Suter JD, Bauman MA, Stoček R, Mars WV (2020) Finite element modeling and critical plane analysis of a cut-and-chip experiment for rubber. Tire Sci Technol. https://doi.org/10.2346/tire.20.190221

  22. Robertson CG, Stoček R, Kipscholl R, Mars WV (2019) Characterizing durability of rubber for tires. Tire Technol Int Ann Rev:78–82

    Google Scholar 

  23. Robertson, C.G., Goossens, J.R., Mars, W.V. (2019) Using the laboratory cutting method for predicting long-term durability of elastomers. In: Paper D15, presented at the fall 196th technical meeting of the rubber division, ACS, Cleveland, OH, Oct 10–12, 2019

    Google Scholar 

  24. Isitman N, Stoček R, Robertson CG (2020) Influences of compounding attributes on intrinsic strength and tearing behavior of model tread rubber compounds. In: Paper scheduled to be presented at the 197th technical meeting of the rubber division, ACS, Independence, OH, April 28–30, 2020 (Presentation slides made available online due to meeting cancellation for COVID-19 precaution)

    Google Scholar 

  25. Hosseini SM, Razzaghi-Kashani M (2018) Catalytic and networking effects of carbon black on the kinetics and conversion of sulfur vulcanization in styrene butadiene rubber. Soft Matter 14:9194–9208

    CAS  PubMed  Google Scholar 

  26. Blokh GA, Melamed CL (1961) The interaction of carbon black with sulfur, MBT and TMTD in vulcanization. Rubber Chem Technol 34:588–599

    Google Scholar 

  27. Bhowmick AK, Gent AN, Pulford CTR (1983) Tear strength of elastomers under threshold conditions. Rubber Chem Technol 56:226–232

    CAS  Google Scholar 

  28. Gent AN, Lai S-M, Nah C, Wang C (1994) Viscoelastic effects in cutting and tearing of rubber. Rubber Chem Technol 67:610–618

    CAS  Google Scholar 

  29. Rader CP (2001) Chapter 7. Vulcanization of rubber – A. sulfur and non-peroxides. In: Baranwal KC, Stephens HL (eds) Basic elastomer technology. The rubber division. ACS, Akron, pp 165–190

    Google Scholar 

  30. Klüppel M (2009) The role of filler networking in fatigue crack propagation of elastomers under high-severity conditions. Macromol Mater Eng 294(2):130–140

    Google Scholar 

  31. Vaikuntam SR, Bhagavatheswaran ES, Xiang F, Wießner S, Heinrich G, Das A, Stöckelhuber KW (2020) Friction, abrasion and crack growth behavior of in-situ and ex-situ silica filled rubber composites. Materials 13:270

    CAS  PubMed Central  Google Scholar 

  32. Sridharan H, Guha A, Bhattacharyya S, Bhowmick AK, Mukhopadhyay R (2019) Effect of silica loading and coupling agent on wear and fatigue properties of a tread compound. Rubber Chem Technol 92:326–349

    CAS  Google Scholar 

  33. Rooj S, Das A, Morozov IA, Stöckelhuber KW, Stoček R, Heinrich G (2013) Influence of “expanded clay” on the microstructure and fatigue crack growth behavior of carbon black filled NR composites. Compos Sci Technol 76:61–68

    CAS  Google Scholar 

  34. Heinrich G, Vilgis TA (1993) Contribution of entanglements to the mechanical properties of carbon black-filled polymer networks. Macromolecules 26:1109–1119

    CAS  Google Scholar 

  35. Robertson CG, Wang X (2004) Nanoscale cooperative length of local segmental motion in polybutadiene. Macromolecules 37:4266–4270

    CAS  Google Scholar 

  36. Fetters LJ, Hadjichristidis N, Lindner JS, Mays JW (1994) Molecular weight dependence of hydrodynamic and thermodynamic properties for well-defined linear polymers in solution. J Phys Chem Ref Data 23:619–640

    CAS  Google Scholar 

  37. Hess WM, McDonald GC (1983) Improved particle size measurements on pigments for rubber. Rubber Chem Technol 56:892–917

    CAS  Google Scholar 

  38. Kraus G (1963) Swelling of filler-reinforced vulcanizates. J Appl Polym Sci 7:861–871

    CAS  Google Scholar 

  39. Busfield JJC, Thomas AG, Yamaguchi K (2004) Electrical and mechanical behavior of filled elastomers 2: the effect of swelling and temperature. J Polym Sci B Polym Phys 42:2161–2167

    CAS  Google Scholar 

  40. Elhaouzi F, Mdarhri A, Brosseau C, El Aboudi I, Almaggoussi A (2019) Effects of swelling on the effective mechanical and electrical properties of a carbon black-filled polymer. Polym Bull 76:2765–2776

    CAS  Google Scholar 

  41. Arai K, Ferry JD (1986) Temperature-dependence of viscoelastic properties of carbon-black-filled rubbers in small shearing deformations. Rubber Chem Technol 59:592–604

    CAS  Google Scholar 

  42. Mujtaba A, Keller M, Ilisch S, Radusch HJ, Beiner M, Thurn-Albrecht T, Saalwächter K (2014) Detection of surface-immobilized components and their role in viscoelastic reinforcement of rubber–silica Nanocomposites. ACS Macro Lett 3:481–485

    CAS  Google Scholar 

  43. Sternstein SS, Amanuel S, Shofner ML (2010) Reinforcement mechanisms in Nanofilled polymer melts and elastomers. Rubber Chem Technol 83:181–198

    CAS  Google Scholar 

  44. Warasitthinon N, Genix A-C, Sztucki M, Oberdisse J, Robertson CG (2019) The Payne effect: primarily polymer-related or filler-related phenomenon? Rubber Chem Technol 92:599–611

    CAS  Google Scholar 

  45. Barbash KP, Mars WV (2016) Critical plane analysis of rubber bushing durability under road loads. SAE technical paper, no. 2016-01-0393

    Google Scholar 

  46. Mars WV, Wei Y, Hao W, Bauman MA (2019) Computing Tire component durability via critical plane analysis. Tire Sci Technol 47:31–54

    Google Scholar 

  47. Mars WV (2021) Critical plane analysis of soft materials. In: Heinrich G, Stoček R, Kipscholl R (eds) Fatigue crack growth in rubber materials: experiments and modelling. Springer, Berlin

    Google Scholar 

  48. Mars WV, Suter JD (2019) Breaking the computational barrier to simulating full road load signals in fatigue. In: Paper C08, presented at the fall 196th technical meeting of the rubber division, ACS, Cleveland, OH, Oct. 10–12, 2019

    Google Scholar 

  49. Aït-Bachir M, Mars WV, Verron E (2012) Energy release rate of small cracks in hyperelastic materials. Int J Non-Linear Mech 47:22–29

    Google Scholar 

  50. Mars WV (2002) Cracking energy density as a predictor of fatigue life under multiaxial conditions. Rubber Chem Technol 75:1–17

    CAS  Google Scholar 

  51. Wunde M, Klüppel M (2021) The role of phase morphology and energy dissipation around the crack tip in fatigue crack propagation of filler reinforced elastomer blends. In: Heinrich G, Stoček R, Kipscholl R (eds) Fatigue crack growth in rubber materials: experiments and modelling. Springer, Berlin

    Google Scholar 

  52. Windslow RJ, Hohenberger TW, Busfield JJC (2021) Determination of the loading mode dependence of the proportionality parameter for the tearing energy of embedded flaws in elastomers under multiaxial deformations. In: Heinrich G, Stoček R, Kipscholl R (eds) Fatigue crack growth in rubber materials: experiments and modelling. Springer, Berlin

    Google Scholar 

  53. Huneau B, Masquelier I, Marco Y, Le Saux V, Noizet S, Schiel C, Charrier P (2016) Fatigue crack initiation in a carbon black-filled natural rubber. Rubber Chem Technol 89:126–141

    CAS  Google Scholar 

  54. Ludwig M, Alshuth T, El Yaagoubi M, Juhre D (2015) Lifetime prediction of elastomers based on statistical occurrence of material defects. In: Marvalová B, Petríková I (eds) Constitutive models for rubber IX. CRC Press, Taylor & Francis Group, London, pp 445–448

    Google Scholar 

  55. Robertson CG, Tunnicliffe LB, Maciag L, Bauman MA, Miller K, Herd CR, Mars WV (2020) Characterizing distributions of tensile strength and crack precursor size to evaluate filler dispersion effects and reliability of rubber. Polymers 12:203

    CAS  PubMed Central  Google Scholar 

  56. Ducrot E, Chen Y, Bulters M, Sijbesma RP, Creton C (2014) Toughening elastomers with sacrificial bonds and watching them break. Science 344:186–189

    CAS  PubMed  Google Scholar 

  57. Xiang C, Wang Z, Yang C, Yao X, Wang Y, Suo Z (2020) Stretchable and fatigue-resistant materials. Mater Today 34:7–16

    CAS  Google Scholar 

  58. Das A, Sallat A, Böhme F, Suckow M, Basu D, Wießner S, Stöckelhuber KW, Voit B, Heinrich G (2015) Ionic modification turns commercial rubber into a self-healing material. ACS Appl Mater Interfaces 7:20623–20630

    CAS  PubMed  Google Scholar 

  59. Zhang W, Liu X, Wang J, Tang J, Hu J, Lu T, Suo Z (2018) Fatigue of double-network hydrogels. Eng Fract Mech 187:74–93

    Google Scholar 

Download references

Acknowledgments

This research was supported in part by the Ministry of Education, Youth and Sports of the Czech Republic – DKRVO (RP/CPS/2020/004). We thank Joshua R. Goossens from DriV Inc. (Milan, OH) and Dr. Nihat Isitman from Goodyear Tire & Rubber Company (Akron, OH) for collaborating in the ISA investigations of compounding effects that are described in previous works [23, 24] and replotted in this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher G. Robertson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Robertson, C.G., Stoček, R., Mars, W.V. (2020). The Fatigue Threshold of Rubber and Its Characterization Using the Cutting Method. In: Heinrich, G., Kipscholl, R., Stoček, R. (eds) Fatigue Crack Growth in Rubber Materials. Advances in Polymer Science, vol 286. Springer, Cham. https://doi.org/10.1007/12_2020_71

Download citation

Publish with us

Policies and ethics