Skip to main content

Dispersion of Inorganic Nanoparticles in Polymer Matrices: Challenges and Solutions

  • Chapter
  • First Online:
Organic-Inorganic Hybrid Nanomaterials

Part of the book series: Advances in Polymer Science ((POLYMER,volume 267))

Abstract

Recently, nanoparticles with remarkable physical and chemical properties have attracted intense attention. Many techniques have been developed to synthesize nanoparticles. The introduction of nanoparticles into organic polymers offers an effective way to improve properties such as electrical conductivity, mechanical properties, thermal stability, flame retardancy, and resistance to chemical reagents. The properties of polymer composites depend on the nanoparticles that are incorporated, including their size, shape, concentration, and interactions with the polymer matrix. However, the lack of compatibility between inorganic particles and polymer matrix limits the applications of nanoparticles in composites. As a result of incompatibility, the dispersion of synthesized inorganic nanoparticles in polymer matrices is very difficult, and particles with specific surface area and volume effects can form aggregates. Therefore, it is necessary to modify the particles to overcome their tendency to aggregate and improve their dispersion in polymer matrices. Two ways are used to modify the surface of inorganic particles: modification of the surface by chemical treatment and the grafting of functional polymeric molecules to the hydroxyl groups existing on the particles. By surface modification of nanoparticles the dispersion of inorganic nanoparticles in organic solvents and polymer matrices is improved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABS:

Acrylonitrile-butadiene-styrene

ATO:

Antimony-doped tin oxide

ATRP:

Atom transfer radical polymerization

BADCy:

Bisphenol-A dicyanate [2,2-bis (4-cyanatophenyl) isopropylidene]

BFN:

BaFe0.5Nb0.5O3

BST:

Ba x Sr1−x TiO3

BSTO:

Barium strontium titanyl oxalate [Ba1−x Sr x TiO(C2O4)2-4H2O]

CB:

Carbon black

CE:

Cyanate ester

CNF:

Carbon nanofiber

CNT:

Carbon nanotube

CTAB:

Hexadecyltrimethyl-ammonium bromide

DBP:

Dibutyl phthalate

DSC:

Differential scanning calorimetry

EPDM:

Ethylene-propylene-diene rubber

FF:

Ferrofluid

FTIR:

Fourier transform infrared spectroscopy

GMA:

Glycidyl methacrylate

h-BaTiO3 :

Hydroxylated BaTiO3

HBP:

Hyperbranched aromatic polyamide

IAAT:

Isopropyl tris(N-amino-ethyl aminoethyl)titanate

iPP:

Isotactic polypropylene

KH550:

3-Aminopropyl triethoxysilane

KH570:

γ-Methacryloxypropyltrimethoxysilane

MAH:

Maleic anhydride

MF:

Magnetic fluid

MMA:

Methyl methacrylate

MMT:

Montmorillonite

MRF:

Magnetorheological fluid

MWCNT:

Multiwalled carbon nanotube

PA6:

Nylon 6

PC:

Polycarbonate

PCL:

Poly(caprolactone)

PLA:

Poly(lactic acid)

PMMA:

Poly(methyl methacrylate)

PP:

Polypropylene

PP-g-MA:

Poly(propylene-graft-maleic anhydride) copolymer

PPS:

Polyphenylene sulfide

PS:

Polystyrene

PU:

Polyurethane

PVDF:

Poly(vinylidene fluoride)

PVDF-HFP:

Poly(vinylidene fluoride-co-hexafluoropropylene)

PVP:

Polyvinylpyrrolidone

SEM:

Scanning electron microscopy

SWNT:

Single-walled carbon nanotube

TBP:

Tributyl phosphate

TEM:

Transmission electron microscopy

TESPT:

Bis(triethoxysilylpropyl)tetrasulfane

TG:

Thermogravimetric

T g :

Glass transition temperature

XRD:

X-ray powder diffraction

ZnFe2O4 :

Zinc ferrite

References

  1. Huang ZM, Zhang YZ, Kotaki M et al (2003) Compos Sci Technol 63:2223

    CAS  Google Scholar 

  2. Thakur VK, Thakur MK (2014) Carbohydr Polym 109:102

    CAS  Google Scholar 

  3. Kalia S, Boufi S, Celli A et al (2014) Colloid Polym Sci 292:5

    CAS  Google Scholar 

  4. Kalia S, Kaith BS, Inderjeet K (eds) (2011) Cellulose fibers: bio- and nano-polymer composites. Springer, Heidelberg

    Google Scholar 

  5. Babu B, Aswani T, Rao GT et al (2014) J Magn Magn Mater 355:76

    CAS  Google Scholar 

  6. Umadevi M, Parimaladevi R, Sangari M (2014) Spectrochim Acta A 120:365

    CAS  Google Scholar 

  7. Nogas-Cwikiel E, Suchanicz J (2013) Arch Metall Mater 58:1397

    CAS  Google Scholar 

  8. Choi D, Wang D, Bae IT et al (2010) Nano Lett 10:2799

    CAS  Google Scholar 

  9. Hsiang HI, Chang YL, Fang JS et al (2011) J Alloys Compd 509:7632

    CAS  Google Scholar 

  10. Chang CY, Huang CY, Wu YC et al (2010) J Alloys Compd 95:108

    Google Scholar 

  11. Siddiqui MA, Chandel VS, Azam A (2012) Appl Surf Sci 258:7354

    CAS  Google Scholar 

  12. Lee JH, Kim YJ (2008) Mater Sci Eng B 146:99

    CAS  Google Scholar 

  13. Li D, Sasaki Y, Kageyama M et al (2005) J Power Sources 148:85

    CAS  Google Scholar 

  14. Tan ETH, Ho GW, Wong ASW et al (2008) Nanotechnology 19:1

    Google Scholar 

  15. Yoon KH, Cho YS, Lee DH et al (1993) J Am Ceram Soc 76:1373

    CAS  Google Scholar 

  16. Wang X, Gao L, Zhou F et al (2004) J Cryst Growth 265:220

    CAS  Google Scholar 

  17. Yang Z, Chang Y, Li H (2005) Mater Res Bull 40:2110

    CAS  Google Scholar 

  18. Nie J, Xu G, Yang Y, Cheng C (2009) Mater Chem Phys 115:400

    Google Scholar 

  19. Chiu CC, Li CC, Desu SB (1991) J Am Ceram Soc 74:38

    CAS  Google Scholar 

  20. Reddy MV, Subba Rao GV, Chowdari BVR (2007) J Chem Phys C 111:11712

    CAS  Google Scholar 

  21. Kan Y, Jin X, Wang P et al (2003) Mater Res Bull 38:567

    CAS  Google Scholar 

  22. Thirumal M, Jain P, Ganguli AK (2001) Mater Chem Phys 70:7

    CAS  Google Scholar 

  23. Ohshima E, Ogino H, Niikura I et al (2004) J Cryst Growth 260:166

    CAS  Google Scholar 

  24. Tam KH, Cheung CK, Leung YH et al (2006) J Chem Phys C 110:20865

    CAS  Google Scholar 

  25. Kolen’ko YV, Churagulov BR, Kunst M et al (2004) Appl Catal B 54:51

    Google Scholar 

  26. Liu J, Ye X, Wang H et al (2003) Ceram Int 29:629

    CAS  Google Scholar 

  27. Kajiyoshi K, Ishizawa N, Yoshimura M (1991) J Am Ceram Soc 74:369

    CAS  Google Scholar 

  28. Xu H, Gao L, Guo J (2002) J Eur Ceram Soc 22:1163

    CAS  Google Scholar 

  29. Ishizawa N, Banno H, Hayashi M et al (1990) Jpn J Appl Phys 29:2467

    CAS  Google Scholar 

  30. Hu Y, Gu H, Sun X et al (2006) Appl Phys Lett 88:193210

    Google Scholar 

  31. Antonelli DM, Ying J (1995) Angew Chem Int Ed 34:2014

    CAS  Google Scholar 

  32. Lee JH, Ko KH, Park BO (2003) J Cryst Growth 247:119

    CAS  Google Scholar 

  33. Wang W, Serp P, Kalck P et al (2005) J Mol Catal A 235:194

    CAS  Google Scholar 

  34. Gu F, Wang SF, Lü MK et al (2004) J Chem Phys C 108:8119

    CAS  Google Scholar 

  35. Tahar RBH, Ban T, Ohya Y et al (1997) Appl Phys Lett 82:865

    Google Scholar 

  36. Ahmed MA, El-Katori EE, Gharni ZH (2013) J Alloys Compd 553:19

    CAS  Google Scholar 

  37. Kotobuki M, Koishi M (2014) Ceram Int 40:5043

    CAS  Google Scholar 

  38. Ding Y, Jiang Y, Xu F et al (2010) Electrochem Commun 12:10

    CAS  Google Scholar 

  39. Petcharoen K, Sirivat A (2012) Mater Sci Eng B 177:421

    CAS  Google Scholar 

  40. Muthukumaran S, Gopalakrishnan R (2012) Opt Mater 34:1946

    CAS  Google Scholar 

  41. Kripal R, Gupta AK, Srivastava RK et al (2011) Spectrochim Acta A 79:1605

    CAS  Google Scholar 

  42. Senthilkumar V, Senthil K, Vickraman P (2012) Mater Res Bull 47:1051

    CAS  Google Scholar 

  43. Kumar AP, Kumar BP, Kumar ABV et al (2013) Appl Surf Sci 265:500

    CAS  Google Scholar 

  44. Zhang M, Sheng G, Fu J et al (2005) Mater Lett 59:3641

    CAS  Google Scholar 

  45. Mahmoodi NM (2011) Desalination 279:332

    CAS  Google Scholar 

  46. Kripal R, Gupta AK, Mishra SK (2010) Spectrochim Acta A 76:52

    Google Scholar 

  47. Yang MR, Ke WH, Wu SH (2005) J Power Sources 146:539

    CAS  Google Scholar 

  48. Lin JM, Chen YC, Lin CP (2013) J Nanomater 2013:1

    Google Scholar 

  49. Dai ZR, Pan ZW, Wang ZL (2003) Adv Funct Mater 13:9

    Google Scholar 

  50. Chen Y, Li J, Dai J (2001) Chem Phys Lett 344:450

    CAS  Google Scholar 

  51. Cantalini C, Wlodarski W, Li Y et al (2000) Sens Actuators B 64:182

    CAS  Google Scholar 

  52. Kuai P, Liu C, Huo P (2009) Catal Lett 129:493

    CAS  Google Scholar 

  53. Yu B, Liu C (2012) Plasma Chem Plasma Process 32:201

    Google Scholar 

  54. Lin Y, Tang Z, Zhang Z et al (2000) J Am Ceram Soc 83:2869

    CAS  Google Scholar 

  55. Reina A, Jia X, Ho J et al (2009) Nano Lett 9:30

    CAS  Google Scholar 

  56. Chhowalla M, Teo KBK, Ducati C et al (2001) J Appl Phys 90:5308

    CAS  Google Scholar 

  57. Xia Y, Mokaya R (2004) Adv Mater 16:1553

    CAS  Google Scholar 

  58. Kumar M, Ando Y (2010) J Nanosci Nanotechnol 10:3739

    CAS  Google Scholar 

  59. Mattevi C, Kim H, Chhowalla M (2011) J Chem Phys 21:3324

    CAS  Google Scholar 

  60. Kim D, Yun I, Kim H (2010) Curr Appl Phys 10:5459

    Google Scholar 

  61. Sun L, He J, Kong H et al (2011) Sol Energ Mater Sol Cell 95:290

    Google Scholar 

  62. Vinodkumar R, Lethy KJ, Beena D et al (2010) Sol Energ Mater Sol Cell 94:68

    CAS  Google Scholar 

  63. Bdikin IK, Gracio J, Ayouchi R et al (2010) Nanotechnology 21:1

    Google Scholar 

  64. Gaur A, Singh P, Choudhary N et al (2011) Physica B 406:1877

    Google Scholar 

  65. Orlianges JC, Champeaux C, Dutheil P et al (2011) Thin Solid Films 519:7611

    CAS  Google Scholar 

  66. Scullin ML, Ravichandran J, Yu C et al (2010) Acta Mater 58:457

    CAS  Google Scholar 

  67. Hakoda T, Yamamoto S, Kawaguchi K et al (2010) Appl Surf Sci 257:1556

    CAS  Google Scholar 

  68. Cho HJ, Lee SU, Hong B et al (2010) Thin Solid Films 518:2941

    CAS  Google Scholar 

  69. Nam E, Kang YH, Jung D et al (2010) Thin Solid Films 518:6245

    CAS  Google Scholar 

  70. Wang X, Zeng X, Huang D et al (2013) J Mater Sci 23:1580

    Google Scholar 

  71. Sarakinos K, Alami J, Konstantinidis S (2010) Surf Coat Technol 204:1661

    CAS  Google Scholar 

  72. You ZZ, Hua GJ (2012) J Alloys Compd 530:11

    CAS  Google Scholar 

  73. Wu L, Chen YC, Chen LJ et al (1999) Jpn J Appl Phys 138:5612

    Google Scholar 

  74. Shao S, Zhang J, Zhang Z et al (2008) J Phys D 41:1

    Google Scholar 

  75. Zhou H, Chen X, Fang L et al (2010) J Mater Sci 21:939

    CAS  Google Scholar 

  76. Li Y, Wang J, Liao R et al (2010) J Alloys Compd 496:282

    CAS  Google Scholar 

  77. Tawichai N, Sittiyot W, Eitssayeam S et al (2012) Ceram Int 38S:S121

    Google Scholar 

  78. Chen K, Zhang X (2010) Ceram Int 36:1523

    CAS  Google Scholar 

  79. Mao C, Wang G, Dong X et al (2007) Mater Chem Phys 106:164

    CAS  Google Scholar 

  80. Li HL, Du ZN, Wang GL et al (2010) Mater Lett 64:431

    CAS  Google Scholar 

  81. Fuentes S, Chávez E, Padilla-Campos L et al (2013) Ceram Int 39:8823

    CAS  Google Scholar 

  82. Chen CF, Reagor DW, Russell SJ et al (2011) J Am Ceram Soc 94:3727

    CAS  Google Scholar 

  83. Maensiri S, Nuansing W, Klinkaewnarong J et al (2006) J Colloid Interface Sci 297:578

    CAS  Google Scholar 

  84. Razak KA, Asadov A, Gao W (2007) Ceram Int 33:1495

    CAS  Google Scholar 

  85. Deshpande SB, Khollam YB (2005) Mater Lett 59:293

    CAS  Google Scholar 

  86. Khollam YB, Deshpande SB, Potdar HS et al (2005) Mater Charact 54:63

    CAS  Google Scholar 

  87. Zuo XH, Deng XY, Chen Y et al (2010) Mater Lett 64:1150

    CAS  Google Scholar 

  88. Pan ZW, Dai ZR, Xu L et al (2001) J Phys Chem 105:2507

    CAS  Google Scholar 

  89. Choi S, Lee MS, Park DW (2014) Curr Appl Phys 14:433

    Google Scholar 

  90. Neamţu BV, Marinca TF, Chicinaş I et al (2014) J Alloys Compd 600:1–7

    Google Scholar 

  91. Chaturvedi V, Ananthapadmanabhan PV, Chakravarthy Y et al (2014) Ceram Int 40:8273

    CAS  Google Scholar 

  92. Yuming W, Junjie H, Yanwei S (2013) Rare Metal Mater Eng 42:1810

    Google Scholar 

  93. Iijima S (1991) Nature 354:56

    CAS  Google Scholar 

  94. Anazawa K, Shimotani K, Manabe C et al (2002) Appl Phys Lett 81:739

    CAS  Google Scholar 

  95. Imasaka K, Kanatake Y, Ohshiro Y et al (2006) Thin Solid Films 506–507:250

    Google Scholar 

  96. Cui S, Scharff P, Siegmund C et al (2004) Carbon 42:931

    CAS  Google Scholar 

  97. Jong Lee S, Koo Baik H, Yoo J et al (2002) Diamond Relat Mater 11:914

    Google Scholar 

  98. Zhao S, Hong R, Luo Z et al (2011) J Nanomater 2011:6

    Google Scholar 

  99. Baba K, Hatada R, Flege S et al (2011) Adv Mater Sci Eng 2012:1

    Google Scholar 

  100. Liew PJ, Yan J, Kuriyagawa T (2013) J Mater Process Technol 213:1076

    CAS  Google Scholar 

  101. Borgohain R, Yang J, Selegue JP et al (2014) Carbon 66:272

    CAS  Google Scholar 

  102. Liu XY, Hong RY, Feng WG et al (2014) Powder Technol 256:158

    CAS  Google Scholar 

  103. Mattevi C, Kim H, Chhowalla M (2011) J Mater Chem 21:3324

    CAS  Google Scholar 

  104. Vinod Kumar R, Lethy KJ, Beena D et al (2010) Sol Energ Mater Sol Cell 94:68

    CAS  Google Scholar 

  105. Yu X, Shen Z (2011) Vacuum 85:1026

    CAS  Google Scholar 

  106. Kango S, Kalia S, Celli A et al (2013) Prog Polym Sci 38:1232

    CAS  Google Scholar 

  107. Dang ZM, Xu HP, Wang HY (2007) Appl Phys Lett 90:012901

    Google Scholar 

  108. Ma Z, Wang JH, Zhang XY (2008) J Appl Polym Sci 107:1000

    CAS  Google Scholar 

  109. Wang HL (2005) Polymer 46:6243

    CAS  Google Scholar 

  110. Bose S, Mahanwar PA (2006) J Appl Polym Sci 99:266

    CAS  Google Scholar 

  111. Hong RY, Li JH, Chen LL et al (2009) Powder Technol 189:426

    CAS  Google Scholar 

  112. Hong RY, Qian JZ, Cao JX (2006) Powder Technol 163:160

    CAS  Google Scholar 

  113. Zdyrko B, Luzinov I (2011) Macromol Rapid Commun 32:859

    CAS  Google Scholar 

  114. Qin S, Qin D, Ford WT et al (2004) Macromolecules 37:752

    CAS  Google Scholar 

  115. Xie L, Huang X, Yang K et al (2014) J Mater Chem A 2:5244

    CAS  Google Scholar 

  116. Baier M, Görgen M, Ehlbeck J et al (2014) Innovat Food Sci Emerg Technol 22:147

    CAS  Google Scholar 

  117. Ehlbeck J, Schnabel U, Polak M et al (2011) J Phys D 44:1

    Google Scholar 

  118. Okpalugo TIT, Papakonstantinou P, Murphy H et al (2005) Carbon 43:153

    CAS  Google Scholar 

  119. Yoon OJ, Lee HJ, Jang YM et al (2011) Appl Surf Sci 257:8535

    CAS  Google Scholar 

  120. Leroux F, Campagne C, Perwuelz A et al (2008) Appl Surf Sci 254:3902

    CAS  Google Scholar 

  121. Takada T, Nakahara M, Kumagai H et al (1996) Carbon 34:1087

    CAS  Google Scholar 

  122. Park JM, Matienzo LJ, Spencer DF (1991) J Adhes Sci Technol 5:153

    CAS  Google Scholar 

  123. Morent R, De Geyter N, Desmet T et al (2011) Plasma Process Polym 8:171

    CAS  Google Scholar 

  124. Yin CY, Aroua MK, Daud WMAW (2007) Se Purif Technol 52:403

    CAS  Google Scholar 

  125. Tashima D, Sakamoto A, Taniguchi M et al (2008) Vacuum 83:695

    CAS  Google Scholar 

  126. Xu T, Yang J, Liu J et al (2007) Appl Surf Sci 253:8945

    CAS  Google Scholar 

  127. López-Manchado MA, Herrero B, Arroyo M (2004) Polym Int 53:1766

    Google Scholar 

  128. Chae DW, Kim BC (2005) Polym Adv Technol 16:846

    CAS  Google Scholar 

  129. Wu TM, Wu CY (2006) Polym Degrad Stab 91:2198

    CAS  Google Scholar 

  130. Shen JW, Chen XM, Huang WY (2003) J Appl Polym Sci 88:1864

    CAS  Google Scholar 

  131. Thomas P, Varughese KT, Dwarakanath K et al (2010) Compos Sci Technol 70:539

    CAS  Google Scholar 

  132. Yang W, Yu S, Sun R et al (2011) Acta Mater 59:5593

    CAS  Google Scholar 

  133. Chanmal CV, Jog JP (2008) Express Polym Lett 2:294

    CAS  Google Scholar 

  134. Pötschke P, Bhattacharyya AR, Janke A (2004) Carbon 42:965

    Google Scholar 

  135. Villmow T, Kretzschmar B, Pötschke P (2010) Compos Sci Technol 70:2045

    CAS  Google Scholar 

  136. Spitalsky Z, Tasis D, Papagelis K et al (2010) Prog Polym Sci 35:357

    CAS  Google Scholar 

  137. Haggenmueller R, Gommans HH, Rinzler AG et al (2000) Chem Phys Lett 330:219

    CAS  Google Scholar 

  138. Bikiaris DN, Vassiliou A, Pavlidou E et al (2005) Eur Polym J 41:1965

    CAS  Google Scholar 

  139. Hu T, Juuti J, Jantunen H (2009) J Eur Ceram Soc 27:2923

    Google Scholar 

  140. Li K, Wang H, Xiang F et al (2009) Appl Phys Lett 95:202904

    Google Scholar 

  141. Chao F, Liang G (2009) J Mater Sci 20:560

    CAS  Google Scholar 

  142. Wu H, Gu A, Liang G et al (2011) J Mater Chem 21:14838

    CAS  Google Scholar 

  143. Sui G, Jana S, Zhong WH et al (2008) Acta Mater 56:2381

    CAS  Google Scholar 

  144. Potts JR, Lee SH, Alam TM et al (2011) Carbon 49:2615

    CAS  Google Scholar 

  145. Xu Z, Gao C (2010) Macromolecules 43:6716

    CAS  Google Scholar 

  146. Cava RJ (2001) J Mater Chem 11:54

    CAS  Google Scholar 

  147. Balazs AC, Emrick T, Russell TP (2006) Science 314:1107

    CAS  Google Scholar 

  148. Luo B, Wang X, Wang Y et al (2014) J Mater Chem 2:510

    CAS  Google Scholar 

  149. Yu K, Niu Y, Zhou Y et al (2013) J Am Ceram Soc 96:2519

    CAS  Google Scholar 

  150. Wang FJ, Li W, Xue MS et al (2011) Compos B 42:87

    Google Scholar 

  151. Xie L, Huang X, Huang Y et al (2013) J Phys Chem C 117:22525

    CAS  Google Scholar 

  152. Yu K, Niu Y, Xiang F et al (2003) Appl Phys Lett 114:174107

    Google Scholar 

  153. Zhou T, Zha JW, Hou Y et al (2011) ACS Appl Mater Interfaces 3:2184

    CAS  Google Scholar 

  154. Tang H, Sodano HA (2013) Nano Lett 13:1373

    CAS  Google Scholar 

  155. Sonoda K, Juuti J, Moriya Y et al (2010) Compos Struct 92:1052

    Google Scholar 

  156. Vékás L (2008) Adv Sci Technol 54:127

    Google Scholar 

  157. Hong RY (2009) Nanoparticles and magnetic fluid: preparation and application. Chem. Ind. Press, China

    Google Scholar 

  158. Liu XY, Zheng SW, Hong RY et al (2014) Colloids Surf A 443:425

    CAS  Google Scholar 

  159. Kordonsky WI (1993) J Magn Magn Mater 122:395

    Google Scholar 

  160. Hong RY, Li JH, Zheng SW et al (2009) J Alloys Compd 480:947

    CAS  Google Scholar 

  161. Hong R, Pan T, Qian J et al (2006) Chem Eng J 119:71

    CAS  Google Scholar 

  162. Xu Y, Liang YT, Jiang LJ et al (2011) J Nanomater 1:1

    Google Scholar 

  163. Zhou ZH, Xue JM, Chan HSO et al (2002) Mater Chem Phys 75:181

    CAS  Google Scholar 

  164. Lu HF, Hong RY, Wang LS et al (2012) Mater Lett 68:237

    CAS  Google Scholar 

  165. Luo Z, Cai X, Hong RY et al (2012) Chem Eng J 187:357

    CAS  Google Scholar 

  166. Luo Z, Cai X, Hong RY et al (2013) J Appl Polym Sci 1:4756

    Google Scholar 

  167. Yuan JJ, Hong RY, Wang YQ, Feng WG (2014) Chem Eng J 253:107–120

    CAS  Google Scholar 

  168. Wang F, Hong RY, Feng WG et al (2014) Mater Lett 125:48

    CAS  Google Scholar 

Download references

Acknowledgments

The project was supported by the National Natural Science Foundation of China (NSFC, No. 21246002), the National Basic Research Program of China (973 Program, No. 2009CB219904), the National Post-doctoral Science Foundation (No. 20090451176), the Jiangsu Provincial Key Laboratory of Environmental Materials and Engineering at Yangzhou University (No. K11025), the Technology Innovation Foundation of MOST (No. 11C26223204581), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), the Natural Science Foundation of Jiangsu Province (No. BK2011328), and the Minjiang Scholarship of Fujian Province

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Y. Hong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hong, R.Y., Chen, Q. (2014). Dispersion of Inorganic Nanoparticles in Polymer Matrices: Challenges and Solutions. In: Kalia, S., Haldorai, Y. (eds) Organic-Inorganic Hybrid Nanomaterials. Advances in Polymer Science, vol 267. Springer, Cham. https://doi.org/10.1007/12_2014_286

Download citation

Publish with us

Policies and ethics