Skip to main content

Part of the book series: Advances in Polymer Science ((POLYMER,volume 262))

Abstract

Graphene has remarkable physical properties, but existing production methods have severe deficiencies that limit its potential use in robust technologies. Opening a reliable and efficient synthetic route to graphene and its functionalized derivatives offers a path to overcome this obstacle for its practical application. Graphene can be regarded as a two-dimensional polymer (2D), and it is here argued that it, along with its derivatives, represents a realistic yet challenging target for polymer synthesis.

In order to demonstrate the possibility of such syntheses, an overview is presented on the evolution of phenylene-based macromolecules. It is shown how classical linear polyphenylenes can be expanded to increasingly more sophisticated structures involving two- and three-dimensional (3D) polyphenylene architectures. A crucial aspect of the meticulous synthetic design of these molecules has been the avoidance of defects within the structures, resulting in the precise control of their physical, especially optoelectronic, properties.

Linear conjugated polymers with defined optical properties have been made by controlling the degree of torsion between the benzene rings. This has included the development of efficient routes to ladder-type polymers and of step-ladder materials. Planar graphene molecules, or nanographenes, in a range of sizes and shapes have been fabricated by the controlled cyclodehydrogenation of 3D polyphenylene dendrimers. By combining knowledge gained from the synthesis of conjugated polymers, polyphenylene dendrimers, and nanographenes, it has proven feasible to make, either by solution or surface-bound methods, graphene nanoribbons with well-defined structures. These functional materials possess properties similar to graphene while displaying improved processability.

Finally, we review less-sophisticated paths towards graphene materials involving processing of graphene oxide, its reduction, and its hybridization with other components. These too have a role to play in acquiring functional graphenes where a lesser degree of control over the properties is required. This voyage of exploration towards the precise synthesis of conjugated phenylene-based polymers has thus had the dual objectives of fundamental research and practical materials science. En route we have had to meet the sometimes conflicting gauntlets thrown down by these two aims, which has at times involved trade-offs between the theoretically desirable and the reasonably accessible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wu D, Zhang F, Liang H, Feng XL (2012) Chem Soc Rev 41:6160

    CAS  Google Scholar 

  2. Yang S, Bachman RE, Feng XL, Müllen K (2013) Acc Chem Res 46:116

    CAS  Google Scholar 

  3. Geim AK (2009) Science 324:1530

    CAS  Google Scholar 

  4. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Science 306:666

    CAS  Google Scholar 

  5. Geim AK, Novoselov KS (2007) Nat Mater 6:183

    CAS  Google Scholar 

  6. Pang SP, Hernandez Y, Feng XL, Müllen K (2011) Adv Mater 23:2779

    CAS  Google Scholar 

  7. Bae S, Kim H, Lee Y, Xu X, Park J-S, Zheng Y, Balakrishnan J, Lei T, Ri Kim H, Song YI, Kim Y-J, Kim KS, Ozyilmaz B, Ahn J-H, Hong BH, Iijima S (2010) Nat Nanotechnol 5:574

    CAS  Google Scholar 

  8. Li X, Magnuson CW, Venugopal A, Tromp RM, Han-non JB, Vogel EM, Colombo L, Ruoff RS (2011) J Am Chem Soc 133:2816

    CAS  Google Scholar 

  9. Li X, Wang X, Zhang L, Lee S, Dai H (2008) Science 319:1229

    Google Scholar 

  10. Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Nature 442:282

    CAS  Google Scholar 

  11. Chen D, Tang L, Li J (2010) Chem Soc Rev 39:3157

    CAS  Google Scholar 

  12. Burghard M, Klauk H, Kern K (2009) Adv Mater 21:2586

    CAS  Google Scholar 

  13. Feng X, Marcon V, Pisula W, Hansen MR, Kirkpatrick J, Grozema F, Andrienko D, Kremer K, Müllen K (2009) Nat Mater 8:421

    CAS  Google Scholar 

  14. Pisula W, Feng XL, Müllen K (2011) Chem Mater 23:554

    CAS  Google Scholar 

  15. Diez-Perez I, Li Z, Hihath J, Li J, Zhang C, Yang X, Zang L, Dai Y, Feng XL, Müllen K, Tao NJ (2010) Nat Commun 1:31. doi:10.1038/ncomms1029

    Google Scholar 

  16. Osella S, Narita A, Schwab MG, Hernandez Y, Feng XL, Müllen K, Beljonne D (2012) ACS Nano 6:5539

    CAS  Google Scholar 

  17. Kosynkin DV, Higginbotham AL, Sinitskii A, Lomeda JR, Dimiev A, Price BK, Tour JM (2009) Nature 458:872

    CAS  Google Scholar 

  18. Tapasztó L, Dobrik G, Lambin P, Biró LP (2008) Nat Nanotechnol 3:397

    Google Scholar 

  19. Pang S, Englert JM, Tsao HN, Hernandez Y, Hirsch A, Feng XL, Müllen K (2010) Adv Mater 22:5374

    CAS  Google Scholar 

  20. Kang J, Hwang S, Kim JH, Kim MH, Ryu J, Seo SJ, Hong BH, Kim MK, Choi JB (2012) ACS Nano 6:5360

    Google Scholar 

  21. Kang J, Shin D, Bae S, Hong BH (2012) Nanoscale 4:5527

    CAS  Google Scholar 

  22. Makio H, Fujita T (2009) Acc Chem Res 42:1532

    CAS  Google Scholar 

  23. Bochmann M (2004) J Organomet 689:3982

    CAS  Google Scholar 

  24. Nomura K, Kitiyanan B (2008) Curr Org Syn 5:217

    CAS  Google Scholar 

  25. Mehdiabadi S, Yiyoung C, Soares JBP (2012) Macromol Symp 313:8

    Google Scholar 

  26. Nenov S, Clark CG Jr, Klapper M, Müllen K (2007) Macromol Chem Phys 208:1362

    CAS  Google Scholar 

  27. Braunecker WA, Matyjaszewski K (2007) Prog Polym Sci 32:93

    CAS  Google Scholar 

  28. Siegwart DJ, Oh JW, Matyjaszewski K (2012) Prog Polym Sci 37:18

    CAS  Google Scholar 

  29. Gregory A, Stenzel MH (2012) Prog Polym Sci 37:38–105

    CAS  Google Scholar 

  30. Grubbs RB (2011) Polym Rev 51:104

    CAS  Google Scholar 

  31. Torchilin VP (2007) Pharm Res 24:1

    CAS  Google Scholar 

  32. Read ES, Armes SP (2007) Chem Commun 2007(29):3021

    Google Scholar 

  33. Motornov M, Roiter Y, Tokarev I, Minko S (2010) Prog Polym Sci 35:174

    CAS  Google Scholar 

  34. Darling SB (2007) Prog Polym Sci 32:1152

    CAS  Google Scholar 

  35. Kim HC, Park SM, Hinsberg DW (2010) Chem Rev 110:146

    CAS  Google Scholar 

  36. Hadjichristidis N, Iatrou H, Pitsikalis M, Mays J (2006) Prog Polym Sci 31:1068

    CAS  Google Scholar 

  37. Wilms D, Stiriba SE, Frey H (2010) Acc Chem Res 43:129

    CAS  Google Scholar 

  38. Otsuka H, Nagasaki Y, Kataoka K (2003) Adv Drug Deliv Rev 55:403

    CAS  Google Scholar 

  39. Caruso F (2001) Adv Mater 13:11

    CAS  Google Scholar 

  40. Ballauff M, Lu Y (2007) Polymer 48:1815

    CAS  Google Scholar 

  41. Matyjaszewski K, Tsarevsky NV (2009) Nat Chem 1:276

    CAS  Google Scholar 

  42. Klapper M, Nenov S, Haschick R, Müller K, Müllen K (2008) Acc Chem Res 41:1190

    CAS  Google Scholar 

  43. Diesing T, Rojas G, Klapper M, Fink G, Müllen K (2009) Angew Chem Int Ed 121:6594

    Google Scholar 

  44. Yokozawa T (2007) Polycondensation. In: Matyjaszewski K, Gnanou Y, Leibler L (eds) Macromolecular engineering: precise synthesis, materials properties, applications. Wiley-VCH, Weinheim

    Google Scholar 

  45. Yagci Y, Tasdelen MA (2006) Prog Polym Sci 31:1133

    CAS  Google Scholar 

  46. Yokoyama A, Yokozawa T (2007) Macromolecules 40:4093

    CAS  Google Scholar 

  47. Frauenrath H (2005) Prog Polym Sci 30:325

    CAS  Google Scholar 

  48. Fürstner A (1996) Active metals: preparation, characterization, applications. VCH, Weinheim

    Google Scholar 

  49. Sakamoto J, Rehahn M, Wegner G, Schlüter AD (2009) Macromol Rapid Commun 30:653

    CAS  Google Scholar 

  50. Boudreault PLT, Najari A, Leclerc M (2011) Chem Mater 23:456

    CAS  Google Scholar 

  51. Li YF (2012) Acc Chem Res 45:723

    CAS  Google Scholar 

  52. Kola S, Sinha J, Katz HE (2012) J Polym Sci B Polym Phys 50:1090

    CAS  Google Scholar 

  53. Wang CL, Dong HL, Hu WP, Liu YQ, Zhu DB (2012) Chem Rev 112:2208

    CAS  Google Scholar 

  54. Biniek L, Schroeder BC, Nielsen CB, McCulloch I (2012) J Mater Chem 22:14803

    CAS  Google Scholar 

  55. Facchetti A (2011) Chem Mater 23:733

    CAS  Google Scholar 

  56. Lin Y, Fan H, Li Y, Zhan X (2012) Adv Mater 24:3087

    CAS  Google Scholar 

  57. Nielsen CB, Turbiez M, McCulloch I (2013) Adv Mater 25:1859

    CAS  Google Scholar 

  58. Liang Y, Yu L (2010) Acc Chem Res 43:1227

    CAS  Google Scholar 

  59. Carsten B, He F, Jung Son H, Xu T, Yu L (2011) Chem Rev 111:1493

    CAS  Google Scholar 

  60. Sariciftci NS, Smilowitz L, Heeger AJ, Wudl F (1992) Science 258:1474

    CAS  Google Scholar 

  61. Scherf U, Gutacker A, Koenen N (2008) Acc Chem Res 41:1086

    CAS  Google Scholar 

  62. Tsao HN, Cho D, Andreasen JW, Rouhanipour A, Breiby DW, Pisula W, Müllen K (2009) Adv Mater 21:209

    CAS  Google Scholar 

  63. Tsao HN, Cho D, Park I, Hansen MR, Mavrinskiy A, Yoon DY, Graf R, Pisula W, Spiess HW, Müllen K (2011) J Am Chem Soc 133:2605

    CAS  Google Scholar 

  64. Wang SH, Kappl M, Lieberwirth I, Müller M, Kirchhoff K, Pisula W, Müllen K (2012) Adv Mater 24:417

    CAS  Google Scholar 

  65. Niedzialek D, Lemaur V, Dudenko D, Shu J, Hansen MR, Andreasen JW, Pisula W, Müllen K, Cornil J, Beljonne D (2013) Adv Mater 25:1939. doi:10.1002/adma.201201058

  66. Chen HJ, Guo YL, Yu G, Zhao Y, Zhang J, Gao D, Liu HT, Liu YQ (2012) Adv Mater 24:4618

    CAS  Google Scholar 

  67. Kanimozhi C, Yaacobi-Gross N, Chou KW, Amassian A, Anthopoulos TD, Patil S (2012) J Am Chem Soc 134:16532

    CAS  Google Scholar 

  68. He ZC, Zhong CM, Su SJ, Xu M, Wu HB, Cao Y (2012) Nat Photon 6:591

    Google Scholar 

  69. Dou LT, Gao J, Richard E, You JB, Chen CC, Cha KC, He YJ, Li G, Yang Y (2012) J Am Chem Soc 134:10071

    CAS  Google Scholar 

  70. Mishra A, Fischer MKR, Bäuerle P (2009) Angew Chem Int Ed 48:2474

    CAS  Google Scholar 

  71. Leclerc M (1999) Adv Mater 11:149

    Google Scholar 

  72. Henson ZB, Müllen K, Bazan GC (2012) Nat Chem 4:699

    CAS  Google Scholar 

  73. Boudreault PLT, Najari A, Leclerc M (2011) Chem Mater 23:456

    CAS  Google Scholar 

  74. Müllen K, Wegne G (eds) (1998) Electronic materials: the oligomer approach. Wiley-VCH, Weinheim

    Google Scholar 

  75. Tsao HN, Müllen K (2010) Chem Soc Rev 39:2372

    CAS  Google Scholar 

  76. Appukkuttan P, Van der Eycken E (2008) Eur J Org Chem 2008:1133

    Google Scholar 

  77. Coffin RC, Peet J, Rogers J, Bazan GC (2009) Nat Chem 1:657

    CAS  Google Scholar 

  78. Yamamoto E, Yamamoto A (1977) Chem Lett 6(4):353

    Google Scholar 

  79. Schlüter AD (2001) J Polym Sci A Polym Chem 39:1533

    Google Scholar 

  80. Mitschke U, Debaerdemaeker T, Bäuerle P (2000) Eur J Org Chem 3:425

    Google Scholar 

  81. Park JK, Jo J, Seo JH, Moon JS, Park YD, Lee K, Heeger AJ, Bazan GC (2011) Adv Mater 23:2430

    CAS  Google Scholar 

  82. Blouin N, Michaud A, Gendron D, Wakim S, Blair E, Plesu RN, Belletete M, Durocher G, Tao Y, Leclerc M (2008) J Am Chem Soc 130:732

    CAS  Google Scholar 

  83. Zou Y, Gendron D, Plesu RN, Leclerc M (2009) Macromolecules 42:6361

    CAS  Google Scholar 

  84. Liang F, Lu J, Ding J, Movileanu R, Tao Y (2009) Macromolecules 42:6107

    CAS  Google Scholar 

  85. Wu PT, Xin H, Kim FS, Ren G, Jenekhe SA (2009) Macromolecules 42:8817

    CAS  Google Scholar 

  86. Kim J, Swager TM (2001) Nature 411:1030

    CAS  Google Scholar 

  87. McQuade DT, Pullen AE, Swager TM (2000) Chem Rev 100:2537

    CAS  Google Scholar 

  88. Yokoyama A, Suzuki H, Kubota Y, Ohuchi K, Higashimura H, Yokozawa T (2007) J Am Chem Soc 129:7236

    CAS  Google Scholar 

  89. Lee M, Cho BK, Zin WC (2011) Prog Polym Sci 36:603

    Google Scholar 

  90. Myongsoo L, Byoung-Ki C, Wang-Cheol Z (2001) Chem Rev 101:3869

    Google Scholar 

  91. Scherf U, Adamczyk S, Gutacker A, Koenen N (2009) Macromol Rapid Commun 30:1059

    CAS  Google Scholar 

  92. Pisula W, Menon A, Stepputat M, Lieberwirth I, Kolb U, Tracz A, Sirringhaus H, Pakula T, Müllen K (2005) Adv Mater 17:684

    CAS  Google Scholar 

  93. Pisula W, Tomović Z, Stepputat M, Kolb U, Pakula T, Müllen K (2005) Chem Mater 17:2641

    CAS  Google Scholar 

  94. Beaujuge PM, Reynolds JR (2010) Chem Rev 110:268

    CAS  Google Scholar 

  95. Leclère P, Surin M, Jonkheijm P, Henze O, Schenning APHJ, Biscarini F, Grimsdale AC, Feast WJ, Meijer EW, Müllen K, Brédas JL, Lazzaroni R (2004) Eur Polym J 40:885

    Google Scholar 

  96. Skotheim TA, Reynolds JR (eds) (2007) Conjugated polymers: theory, synthesis, properties, and characterization. CRC and Taylor & Francis, Boca Raton

    Google Scholar 

  97. Skotheim TA, Elsenbaumer RL, Reynolds JR (eds) (1998) Handbook of conducting polymers. Dekker, New York

    Google Scholar 

  98. Brédas JL, Silbey R (eds) (1991) Conjugated polymers. Kluwer, Dordrecht

    Google Scholar 

  99. Müllen K, Scherf U (eds) (2006) Organic light-emitting devices. Wiley-VCH, Weinheim

    Google Scholar 

  100. Kohler A, dos Santos DA, Beljonne D, Shuai Z, Bredas JL, Holmes AB, Kraus A, Müllen K, Friend RH (1998) Nature 392:903

    CAS  Google Scholar 

  101. Gourley KD, Lillya CD, Reynolds JR, Chien JCW (1984) Macromolecules 17:1025

    CAS  Google Scholar 

  102. Junkers T, Vandenbergh J, Adriaensens P, Lutsenb L, Vanderzande D (2012) Polym Chem 3:275

    CAS  Google Scholar 

  103. Schmidt-Mende L, Fechtenkötter A, Müllen K, Moons E, Friend RH, MacKenzie JD (2001) Science 293:1119

    CAS  Google Scholar 

  104. Schmaltz B, Weil T, Müllen K (2009) Adv Mater 21:1067

    CAS  Google Scholar 

  105. Sakamoto J, van Heijst J, Lukin O, Schlüter AD (2009) Angew Chem Int Ed 48:1030

    CAS  Google Scholar 

  106. Gin DL, Conticello VP, Grubbs RH (1992) Polym Mater Sci Eng 67:87

    CAS  Google Scholar 

  107. Gin DL, Conticello VP, Grubbs RH (1994) J Am Chem Soc 116:10507

    Google Scholar 

  108. Gin DL, Conticello VP, Grubbs RH (1994) J Am Chem Soc 116:10934

    Google Scholar 

  109. Burroughes JH, Bradley DDC, Brown AR, Marks RN, Mackay K, Friend RH, Burn PL, Kraft A, Holmes AB (1990) Nature 347:539

    CAS  Google Scholar 

  110. Braun D, Heeger AJ (1991) Appl Phys Lett 58:1982

    CAS  Google Scholar 

  111. Grem G, Leditzky G, Ullrich B, Leising G (1992) Adv Mater 4:36

    CAS  Google Scholar 

  112. Trasch S, Niko A, Leising G, Scherf U (1996) Appl Phys Lett 68:1090

    Google Scholar 

  113. Rehahn M, Schlüter AD, Wegner G, Feast WJ (1989) Polymer 30:1060

    CAS  Google Scholar 

  114. Schlüter AD, Wegner G (1993) Acta Polymerica 59:44

    Google Scholar 

  115. Rehahn M, Schlüter AD, Wegner G (1990) Macromol Chem 191:1991

    CAS  Google Scholar 

  116. De Meijere A, Diederich F (eds) (2004) Metal-catalysed crosscoupling reaction. Wiley-VCH, Weinheim

    Google Scholar 

  117. Miyaura N, Yamada K, Suzuki A (1979) Tetrahedron Lett 20(36):3437

    Google Scholar 

  118. Park KC, Dodd LR, Levon K, Kwei TK (1996) Macromolecules 29:7149

    CAS  Google Scholar 

  119. Wegner G (2003) Macromol Chem Phys 204:347

    CAS  Google Scholar 

  120. Scherf U (1999) J Mater Chem 9:1853

    CAS  Google Scholar 

  121. Leising G, Tasch S, Meghdadi F, Athouel L, Froyer G, Scherf U (1996) Synth Met 81:185

    CAS  Google Scholar 

  122. Scherf U, Müllen K (1992) Polymer 33:2443

    CAS  Google Scholar 

  123. Scherf U, Müllen K (1991) Macromol Chem Rapid Comm 12:489

    CAS  Google Scholar 

  124. Fukuda M, Sawada K, Yoshino K (1993) J. Polym. Sci. Polym Chem 31:2465

    CAS  Google Scholar 

  125. Jacob J, Sax S, Gaal M, List EJW, Grimsdale AC, Müllen K (2005) Macromolecules 38:9933

    CAS  Google Scholar 

  126. Jacob J, Sax S, Piok T, List EJW, Grimsdale AC, Müllen K (2004) J Am Chem Soc 126:6987

    CAS  Google Scholar 

  127. Jacob J, Zhang J, Grimsdale AC, Müllen K (2003) Macromolecules 36:8240

    CAS  Google Scholar 

  128. Diez-Perez I, Hihath J, Hines T, Wang ZS, Zhou G, Müllen K, Tao NJ (2011) Nat Nanotechnol 6:226

    CAS  Google Scholar 

  129. Chmil K, Scherf U (1993) Makromol Chem Rapid Comm 14:217

    CAS  Google Scholar 

  130. Chmil K, Scherf U (1997) Acta Polymerica 48:208

    CAS  Google Scholar 

  131. Tyutyulkov N, Dietz F, Ivanova A, Müllen K (1999) Dyes Pigments 42:215

    CAS  Google Scholar 

  132. Quante H, Müllen K (1995) Angew Chem Int Ed 34:1323

    CAS  Google Scholar 

  133. Weil T, Vosch T, Hofkens J, Peneva K, Müllen K (2010) Angew Chem Int Ed 49:9068

    CAS  Google Scholar 

  134. Herrmann A, Müllen K (2006) Chem Lett 35:978

    CAS  Google Scholar 

  135. Yamamoto T (1992) Prog Polym Sci 17:1153

    CAS  Google Scholar 

  136. Graupner W, Leditzky G, Leising G, Scherf U (1996) Phys Rev B 54:7610

    CAS  Google Scholar 

  137. List EJW, Kim CH, Shinar J, Pogantsch A, Leising G, Graupner W (2000) App Phys Lett 76:2083

    CAS  Google Scholar 

  138. Petekidis G, Fytas G, Scherf U, Müllen K, Fleischer G (1999) J Polym Sci B Polym Phys 37(16):2211

    Google Scholar 

  139. Somma E, Loppinet B, Fytas G, Setayesh S, Jacob J, Grimsdale AC, Müllen K (2004) Coll Polym Sci 282:867

    CAS  Google Scholar 

  140. Grimsdale AC, Chan KL, Martin RE, Jokisz PG, Holmes AB (2009) Chem Rev 109:897

    CAS  Google Scholar 

  141. Grimsdale AC, Müllen K (2006) Adv Polym Sci 199:1

    CAS  Google Scholar 

  142. Vogel T, Blatter K, Schlüter AD (1989) Makromol Chem Rapid Comm 10:427

    CAS  Google Scholar 

  143. Wegener S, Müllen K (1991) Chem Ber 124:2101

    CAS  Google Scholar 

  144. Horn T, Wegener S, Müllen K (1995) Macromol Chem Phys 196:2463

    CAS  Google Scholar 

  145. Kohnke FH, Mathias JP, Stoddart JF (1989) Angew Chem Int Ed 28:1103

    Google Scholar 

  146. Eisenberg D, Shenhar R, Rabinovitz M (2010) Chem Soc Rev 39:2879

    CAS  Google Scholar 

  147. Wegener S, Müllen K (1993) Macromolecules 26:3037

    CAS  Google Scholar 

  148. Clar E (1964) Polycyclic hydrocarbons. Academic, London

    Google Scholar 

  149. Clar E (1972) The aromatic sextet. Wiley, London

    Google Scholar 

  150. Rouillé G, Steglich M, Huisken F, Henning T, Müllen K (2009) J Chem Phys 131:204311

    Google Scholar 

  151. Tielens AGGM (2008) Annu Rev Astron Astrophys 46:289

    CAS  Google Scholar 

  152. Räder HJ, Rouhanipour A, Talarico AM, Palermo V, Samori P, Müllen K (2006) Nat Mater 5:276

    Google Scholar 

  153. Stabel A, Herwig P, Müllen K, Rabe J (1995) Angew Chem Int Ed 34:1609

    CAS  Google Scholar 

  154. Kumar B, Viboh RL, Bonifacio MC, Thompson WB, Buttrick JC, Westlake BC, Kim M-S, Zoellner RW, Varganov SA, Mçrschel P, Teteruk J, Schmidt MU, King BT (2012) Angew Chem Int Ed 51:12795

    Google Scholar 

  155. Zhai L, Shukla R, Wadumethrige SH, Rathore R (2010) J Org Chem 75:4748

    CAS  Google Scholar 

  156. Rempala P, Kroulik J, King BT (2006) J Org Chem 71:5067

    CAS  Google Scholar 

  157. Watson MD, Fechtenkötter A, Müllen K (2001) Chem Rev 101:1267

    CAS  Google Scholar 

  158. Feng XL, Pisula W, Müllen K (2009) Pure Appl Chem 81:2203

    CAS  Google Scholar 

  159. Xiao S, Kang SJ, Wu Y, Ahn S, Kim JB, Loo Y-L, Siegrist T, Steigerwald ML, Li H, Nuckolls C (2013) Chem Sci 4:2018

    CAS  Google Scholar 

  160. Uribe-Romo FJ, Dichtel WR (2012) Nat Chem 4:244

    CAS  Google Scholar 

  161. Colson JW, Woll AR, Mukherjee A, Levendorf MP, Spitler EL, Shields VB, Spencer MG, Park J, Dichtel WR (2011) Science 332:228

    CAS  Google Scholar 

  162. Hill JP, Jin W, Kosaka A, Fukushima T, Ichihara H, Shimomura T, Ito K, Hashizume T, Ishii N, Aida T (2004) Science 304:1481

    CAS  Google Scholar 

  163. He Y, Yamamoto Y, Jin W, Fukushima T, Saeki A, Seki S, Ishii N, Aida T (2010) Adv Mater 22:829

    CAS  Google Scholar 

  164. Yan X, Cui X, Li B, Li LS (2010) J Am Chem Soc 132:5944

    CAS  Google Scholar 

  165. Yamamoto Y, Fukushima T, Suna Y, Ishii N, Saeki A, Seki S, Tagawa S, Taniguchi M, Kawai T, Aida T (2006) Science 314:1761

    CAS  Google Scholar 

  166. Pradhan A, Dechambenoit P, Bock H, Durola F (2011) Angew Chem Int Ed 50:12582

    CAS  Google Scholar 

  167. Simpson CD, Brand JD, Berresheim AJ, Przybilla L, Räder HJ, Müllen K (2002) Chem Eur J 6:1424

    Google Scholar 

  168. Wasserfallen D, Kastler M, Pisula W, Hofer WA, Fogel Y, Wang ZH, Müllen K (2006) J Am Chem Soc 128:1334

    CAS  Google Scholar 

  169. Pisula W, Tomović Z, Simpson C, Kastler M, Pakula T, Müllen K (2005) Chem Mater 17:4296

    CAS  Google Scholar 

  170. Simpson CD, Wu J, Watson MD, Müllen K (2004) J Mater Chem 14:494

    CAS  Google Scholar 

  171. Pisula W, Kastler M, Wasserfallen D, Mondeshki M, Piris J, Schnell I, Müllen K (2006) Chem Mater 18:3634

    CAS  Google Scholar 

  172. Pisula W, Zorn M, Chang JY, Müllen K, Zentel R (2009) Macromol Rapid Comm 30:1179

    CAS  Google Scholar 

  173. Müllen K, Rabe JP (2008) Acc Chem Res 41:511

    Google Scholar 

  174. Müller M, Kübel C, Müllen K (1998) Chem Eur J 4:2099

    Google Scholar 

  175. Jäckel F, Watson MD, Müllen K, Rabe JP (2004) Phys Rev Lett 92:188303

    Google Scholar 

  176. Böhme T, Simpson CD, Müllen K, Rabe JP (2007) Chem Eur J 13:7349

    Google Scholar 

  177. Kastler M, Pisula W, Laquai F, Kumar A, Davies RJ, Baluschev S, Garcia-Gutiérrez M-C, Wasserfallen D, Butt H-J, Riekel C, Wegner G, Müllen K (2006) Adv Mater 18:2255

    CAS  Google Scholar 

  178. Wu J, Pisula W, Müllen K (2007) Chem Rev 107:718

    CAS  Google Scholar 

  179. Tomalia DA, Naylor AM, Goddard WA (1990) Angew Chem Int Ed 29:138

    Google Scholar 

  180. Bosman AW, Janssen HM, Meijer EW (1999) Chem Rev 99:1665

    CAS  Google Scholar 

  181. Zeng FW, Zimmerman SC (1997) Chem Rev 97:1681

    CAS  Google Scholar 

  182. Fréchet JMJ, Tomalia DA (eds) (2001) Dendrimers and other dendritic polymers. Wiley, New York

    Google Scholar 

  183. Vögtle F, Richardt G, Werner N (eds) (2009) Dendrimer chemistry. Wiley-VCH, Weinheim

    Google Scholar 

  184. Astruc D, Boisselier E, Ornelas CT (2010) Chem Rev 110:1857

    CAS  Google Scholar 

  185. Moore JS (1997) Acc Chem Res 30:402

    CAS  Google Scholar 

  186. Campagna S, Ceroni P, Puntoriero F (eds) (2012) Designing dendrimers. Wiley, New York

    Google Scholar 

  187. Buhleier E, Wehner W, Vögtle F (1978) Synthesis 2:155

    Google Scholar 

  188. Bauer RE, Grimsdale AC, Müllen K (2005) Top Curr Chem 245:253

    CAS  Google Scholar 

  189. Wiesler UM, Weil T, Müllen K (2001) Top Curr Chem 212:1

    CAS  Google Scholar 

  190. Türp D, Nguyen TTT, Baumgarten M, Müllen K (2012) New J Chem 36(2):282

    Google Scholar 

  191. Morgenroth F, Reuther E, Müllen K (1997) Angew Chem Int Ed 36:631

    CAS  Google Scholar 

  192. Andreitchenko EV, Clark CG, Bauer RE, Lieser G, Müllen K (2005) Angew Chem Int Ed 44:6348

    CAS  Google Scholar 

  193. Clark CG, Wenzel RJ, Andreitchenko EV, Steffen W, Zenobi R, Müllen K (2007) J Am Chem Soc 129:3292

    CAS  Google Scholar 

  194. Nguyen TTT, Baumgarten M, Rouhanipour A, Räder HJ, Lieberwirth I, Müllen K (2013) J Am Chem Soc 135:4183

    CAS  Google Scholar 

  195. Vögtle F (ed) (2001) Dendrimers III: design, dimension, function. Topics in current chemistry, vol 212. Springer, Berlin, Heidelberg

    Google Scholar 

  196. Weil T, Reuther E, Müllen K (2002) Angew Chem Int Ed 114:1980

    Google Scholar 

  197. Oesterling I, Müllen K (2007) J Am Chem Soc 129:4595

    CAS  Google Scholar 

  198. Iwasawa T, Tokunaga M, Obora Y, Tsuji Y (2004) J Am Chem Soc 126:6554

    CAS  Google Scholar 

  199. Tsuji Y, Fujihara T (2007) Inorg Chem 46:1895

    CAS  Google Scholar 

  200. Yin M, Ding K, Gropeanu RA, Shen J, Berger R, Weil T, Müllen K (2008) Biomacromolecules 9:3231

    CAS  Google Scholar 

  201. Tomalia DA, Baker H, Dewald J, Hall M, Kallos G, Martin S, Roeck J, Ryder J, Smith P (1985) Polymer 17:117

    CAS  Google Scholar 

  202. Weil T, Reuther E, Beer C, Müllen K (2004) Chem Eur J 10:1398

    CAS  Google Scholar 

  203. Lubczyk D, Siering C, Lörgen J, Shifrina ZB, Müllen K, Waldvogel SR (2010) Sens Actuators B 143:561

    CAS  Google Scholar 

  204. Lubczyk D, Grill M, Baumgarten M, Waldvogel SR, Müllen K (2012) ChemPlusChem 77:102

    CAS  Google Scholar 

  205. Yin M, Shen J, Gropeanu R, Pflugfelder GO, Weil T, Müllen K (2008) Small 4:894

    CAS  Google Scholar 

  206. Kuan SL, Stöckle B, Reichenwallner J, Ng DYW, Wu Y, Doroshenko M, Koynov K, Hinderberger D, Müllen K, Weil T (2013) Biomacromolecules 14:367

    CAS  Google Scholar 

  207. Chen L, Hernandez Y, Feng XL, Müllen K (2012) Angew Chem Int Ed 51:7640

    CAS  Google Scholar 

  208. Dössel L, Gherghel L, Feng XL, Müllen K (2011) Angew Chem Int Ed 50:2540

    Google Scholar 

  209. Schwab MG, Narita A, Hernandez Y, Balandina T, Mali KS, De Feyter S, Feng XL, Müllen K (2012) J Am Chem Soc 134:18169

    CAS  Google Scholar 

  210. Englert JM, Hirsch A, Feng XL, Müllen K (2011) Angew Chem Int Ed 50:A17

    Google Scholar 

  211. Wu JS, Gherghel L, Watson MD, Li J, Wang Z, Simpson CD, Kolb U, Müllen K (2003) Macromolecules 36:7082

    CAS  Google Scholar 

  212. Yang X, Dou X, Rouhanipour A, Zhi L, Räder H-J, Müllen K (2008) J Am Chem Soc 130:4216

    CAS  Google Scholar 

  213. Fasel R, Parschau M, Ernst KH (2003) Angew Chem Int Ed 42:5178

    CAS  Google Scholar 

  214. Rabe J, Bucholz S (1991) Science 253:424

    CAS  Google Scholar 

  215. Forster JS, Frommer JE (1988) Nature 333:542

    Google Scholar 

  216. Frommer J (1992) Angew Chem Int Ed 31:1298

    Google Scholar 

  217. Treier M, Pignedoli CA, Laino T, Rieger R, Müllen K, Passerone D, Fasel R (2011) Nat Chem 3:61

    CAS  Google Scholar 

  218. Lafferentz L, Eberhardt V, Dri C, Africh C, Comelli G, Esch F, Hecht S, Grill L (2012) Nat Chem 4:215

    CAS  Google Scholar 

  219. Grill L, Dyer M, Lafferentz L, Persson M, Peters MV, Hecht S (2007) Nat Nanotechnol 2:687

    CAS  Google Scholar 

  220. Kawano S-I, Baumgarten M, Müllen K, Murer P, Schäfer T, Saleh M (2010) Patent no: TW201,008,972

    Google Scholar 

  221. Cai JM, Ruffieux P, Jaafar R, Bieri M, Braun T, Blankenburg S, Muoth M, Seitsonen AP, Saleh M, Feng XL, Müllen K, Fasel R (2010) Nature 466:470

    CAS  Google Scholar 

  222. Saleh M, Baumgarten M, Mavrinskiy A, Schäfer T, Müllen K (2010) Macromolecules 43:137

    CAS  Google Scholar 

  223. Talirz L, Söde H, Cai J, Ruffieux P, Blankenburg S, Jafaar R, Berger R, Feng XL, Müllen K, Passerone D, Fasel R, Pignedoli CA (2013) J Am Chem Soc 135:2060

    Google Scholar 

  224. Ruffieux P, Cai J, Plumb NC, Patthey L, Prezzi D, Ferretti A, Molinari E, Feng XL, Müllen K, Pignedoli CA, Fasel R (2012) ACS Nano 6:6930

    CAS  Google Scholar 

  225. Linden S, Zhang D, Timmer A, Aghdassi N, Franke JF, Zhang H, Feng X, Müllen K, Fuchs H, Chi L, Zacharias H (2012) Phys Rev Lett 108:216801

    CAS  Google Scholar 

  226. Schlütter F, Rossel F, Kivala M, Enkelmann V, Gisselbrecht JP, Ruffieux P, Fasel R, Müllen K (2013) J Am Chem Soc 135:4550

    Google Scholar 

  227. Bieri M, Blankenburg S, Kivala M, Pignedoli CA, Ruffieux P, Müllen K, Fasel R (2011) Chem Commun 47:10239

    CAS  Google Scholar 

  228. Wang SH, Kivala M, Lieberwirth I, Kirchhoff K, Feng XL, Pisula W, Müllen K (2011) ChemPhysChem 12:1648

    CAS  Google Scholar 

  229. Bieri M, Treier M, Cai J, Mansour KA, Ruffieux P, Groning O, Groning P, Kastler M, Rieger R, Feng X, Müllen K, Fasel R (2009) Chem Commun 2009(45):6919

    Google Scholar 

  230. He Q, Wu S, Yina Z (2012) Hua Zhang. Chem Sci 3:1764

    CAS  Google Scholar 

  231. Schedin F, Geim AK, Morozov SV, Hill EW, Blake P, Katsnelson MI, Novoselov KS (2007) Nat Mater 6:652

    CAS  Google Scholar 

  232. Cao XH, Shi YM, Shi WH, Lu G, Huang X, Yan QY, Zhang QC, Zhang H (2011) Small 7:3163

    CAS  Google Scholar 

  233. Chen Z, Ren W, Gao L, Liu B, Pei S, Cheng HM (2011) Nat Mater 10:424

    CAS  Google Scholar 

  234. Zilberman Y, Tisch U, Pisula W, Feng X, Müllen K, Haick H (2009) Langmuir 25:5411

    CAS  Google Scholar 

  235. Zilberman Y, Ionescu R, Feng XL, Müllen K, Haick H (2011) ACS Nano 5:6743

    CAS  Google Scholar 

  236. Ionescu R, Broza Y, Shaltieli H, Sadeh D, Zilberman Y, Feng XL, Glass-Marmor L, Lejbkowicz I, Müllen K, Miller A, Haick H (2011) ACS Chem Neurosci 2:687

    CAS  Google Scholar 

  237. Bachar N, Mintz L, Zilberman Y, Ionescu R, Feng XL, Müllen K, Haick H (2012) ACS Appl Mater Interfaces 4:4960

    CAS  Google Scholar 

  238. Koening SP, Wang LD, Pellegrino J, Bunch JS (2012) J Scott Nat Nanotechnol 7:728

    Google Scholar 

  239. Nair RR, Wu HA, Jayaram PN, Grigorieva IV, Geim AK (2012) Science 335:442

    CAS  Google Scholar 

  240. Blankenburg S, Bieri M, Fasel R, Müllen K, Pignedoli CA, Passerone D (2010) Small 6:2266

    CAS  Google Scholar 

  241. Dai LM (2013) Acc Chem Res 46:31

    CAS  Google Scholar 

  242. Wang HL, Dai HJ (2013) Chem Soc Rev 42:3088

    CAS  Google Scholar 

  243. Sun YQ, Wu QO, Shi GQ (2011) Energy Environ Sci 4:1113

    CAS  Google Scholar 

  244. Pumera M (2011) Energy Environ Sci 4:668

    CAS  Google Scholar 

  245. Yang SB, Feng XL, Zhi LJ, Cao Q, Maier J, Müllen K (2010) Adv Mater 22:838

    CAS  Google Scholar 

  246. Kaskhedikar NA, Maier J (2009) Adv Mater 21:2664

    CAS  Google Scholar 

  247. Zhang J, Hu YS, Tessonnier JP, Weinberg G, Maier J, Schlogl R, Su DS (2008) Adv Mater 20:1450

    CAS  Google Scholar 

  248. Grimsdale AC, Wu JS, Müllen K (2005) Chem Commun 2005(17):2197

    Google Scholar 

  249. Yang SB, Cui GL, Pang SP, Cao Q, Kolb U, Feng XL, Maier J, Müllen K (2010) ChemSusChem 3:236

    Google Scholar 

  250. Pandolfo AG, Hollenkamp AF (2006) J Power Sources 157:11

    CAS  Google Scholar 

  251. Frackowiak E, Beguin F (2001) Carbon 39:937

    CAS  Google Scholar 

  252. Zhang LL, Zhao XS (2009) Chem Soc Rev 38:2520

    CAS  Google Scholar 

  253. Cui G, Zhou XH, Zhi L, Thomas A, Müllen K (2007) New Carbon Mater 22:302

    CAS  Google Scholar 

  254. Wu ZS, Winter A, Chen L, Sun Y, Turchanin A, Feng XL, Müllen K (2012) Adv Mater 24:5130

    CAS  Google Scholar 

  255. Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon JM (2000) Nature 407:496

    CAS  Google Scholar 

  256. Chan CK, Peng HL, Liu G, McIlwrath K, Zhang XF, Huggins RA, Cui Y (2008) Nat Nanotechnol 3:31

    CAS  Google Scholar 

  257. Zhang WM, Hu JS, Guo YG, Zheng SF, Zhong LS, Song WG, Wan LJ (2008) Adv Mater 20:1160

    CAS  Google Scholar 

  258. Li XL, Zhang GY, Bai XD, Sun XM, Wang XR, Wang E, Dai HJ (2008) Nat Nanotechnol 3:538

    CAS  Google Scholar 

  259. Eda G, Fanchini G, Chhowalla M (2008) Nat Nanotechnol 3:270

    CAS  Google Scholar 

  260. Park S, Ruoff RS (2009) Nat Nanotechnol 4:217

    CAS  Google Scholar 

  261. Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) Chem Soc Rev 39:228

    CAS  Google Scholar 

  262. Wang X, Zhi L, Müllen K (2008) Nano Lett 8:323

    CAS  Google Scholar 

  263. Wang X, Zhi L, Tsao N, Tomović Z, Li J, Müllen K (2008) Angew Chem Int Ed 47:2990

    CAS  Google Scholar 

  264. Li H, Pang S, Feng XL, Müllen K, Bubeck C (2010) Chem Comm 46:6243

    CAS  Google Scholar 

  265. Su Q, Pang SP, Alijani V, Li C, Feng XL, Müllen K (2009) Adv Mater 21:3191

    CAS  Google Scholar 

  266. Liang YY, Frisch J, Zhi LJ, Norouzi-Arasi H, Feng XL, Rabe JP, Koch N, Müllen K (2009) Nanotechnology 20:434007

    Google Scholar 

  267. Yang SB, Feng XL, Ivanovici S, Müllen K (2010) Angew Chem Int Ed 49:8408

    CAS  Google Scholar 

  268. Cui G, Hu Y-S, Zhi L, Wu D, Lieberwirth I, Maier J, Müllen K (2007) Small 3:2066

    CAS  Google Scholar 

  269. Cui G, Gu L, Zhi L, Kaskhedikar N, van Aken PA, Müllen K, Maier J (2008) Adv Mater 20:3079

    CAS  Google Scholar 

  270. Yang SB, Feng XL, Wang XC, Müllen K (2011) Angew Chem Int Ed 50:5339

    CAS  Google Scholar 

  271. Parvez K, Yang SB, Hernandez Y, Winter A, Turchanin A, Feng XL, Müllen K (2012) ACS Nano 6:9541

    CAS  Google Scholar 

  272. Winter M, Brodd RJ (2004) Chem Rev 104:4245

    CAS  Google Scholar 

  273. Chen ZW, Waje M, Li WZ, Yan YS (2007) Angew Chem Int Ed 119:4138

    Google Scholar 

  274. Lim B, Jiang MJ, Camargo PHC, Cho EC, Tao J, Lu XM, Zhu YM, Xia YN (2009) Science 324:1302

    CAS  Google Scholar 

  275. Kurak KA, Anderson AB (2009) J Phys Chem C 113:6730

    CAS  Google Scholar 

  276. Ikeda T, Boero M, Huang SF, Terakura K, Oshima M, Ozaki J (2008) J Phys Chem C 112:14706

    CAS  Google Scholar 

  277. Panchakarla LS, Subrahmanyam KS, Saha SK, Govindaraj A, Krishnamurthy HR, Waghmare UV, Rao CNR (2009) Adv Mater 21:4726

    CAS  Google Scholar 

  278. Liu RL, Wu DQ, Feng XL, Müllen K (2010) Angew Chem Int Ed 49:2565

    CAS  Google Scholar 

  279. Zhi L, Müllen K (2008) J Mater Chem 18:1472

    CAS  Google Scholar 

  280. Shao YY, Sui JH, Yin GP, Gao YZ (2008) Appl Catal, B 79:89

    CAS  Google Scholar 

  281. Thomas A (2010) Angew Chem Int Ed 49:8328

    CAS  Google Scholar 

  282. Paraknowitsch JP, Thomas A (2012) Macromol Chem Phys 213:1132

    CAS  Google Scholar 

  283. Liu RL, von Malotki C, Arnold L, Koshino N, Higashimura H, Baumgarten M, Müllen K (2011) J Am Chem Soc 133:10372

    CAS  Google Scholar 

Download references

Acknowledgements

Synthetic breakthroughs in the fabrication of small conjugated molecules all the way to complex, functional polyphenylene macromolecules have led to the achievements in the synthesis of graphene and its derivatives. This would not have been possible without the immense efforts of many skilled and creative chemists, both molecular and material, physicists, and engineers that I have had the pleasure of working with. Therefore, I must express my sincerest appreciation for the hard work of my colleagues and students that contributed to this work. I am truly amazed at the successes we have experienced in transforming small molecules into the complex macromolecules discussed herein, and the properties that these structure possess. May we continue this work towards addressing new challenges and breakthroughs in the field of conjugated molecules.

 We would like to gratefully acknowledge the generous funding that has contributed to this research by the EU projects DISCEL (G5RD-CT-2000-00321), FP7-Energy-2010-FET Project Molesol (FP7-Energy-2010 256617), EU Project GENIUS (ITN-264694) Superior (ITN-238177) and the Integrated projects RADSAS (NMP3-CT-2004-001561), ONE-P (NMP3-LA-2008-212311), NAIMO (NMP4-CT-2004-500355), MAC-Mes (Grd2-2000-30242), NANOGRAPH (ERC-Adv.-Grant 267160). Additional financial support was provided by Volkswagen Stiftung, MPG (ENERCHEM), BMBF (Projects LiBZ and Graphenoid-Lagen), the German Science Foundation within the frame of the ESF Projects GOSPEL (09-EuroGRAPHENE-FP-001), SONS2-SUPRAMATES and SONS-BIONICS, Korean-German IRTG, DFG Priority Programs SPP 1355, SPP 1459 and the Sonderforschungsbereich SFB 625. Industrial collaborations with BASF AG, Ludwigshafen, Merck KGaA,, SONY, Hoffmann-La Roche AG, DuPont, and Sumitomo Chemical were also essential to the success of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Müllen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Müllen, K. (2013). Graphene as a Target for Polymer Synthesis. In: Percec, V. (eds) Hierarchical Macromolecular Structures: 60 Years after the Staudinger Nobel Prize II. Advances in Polymer Science, vol 262. Springer, Cham. https://doi.org/10.1007/12_2013_239

Download citation

Publish with us

Policies and ethics