Skip to main content

Hold on at the Right Spot: Bioactive Surfaces for the Design of Live-Cell Micropatterns

  • Chapter
  • First Online:
Bioactive Surfaces

Part of the book series: Advances in Polymer Science ((POLYMER,volume 240))

Abstract

The merger of biology and modern microsystem technology bears challenges literally at the interface. Precise control of the interaction between an artificial surface and a biological environment is a prerequisite for a successful interplay of the “living world” with man-made technology. Any design of a chip for a spatially controlled attachment and outgrowth of living cells has to meet two fundamental yet apparently opposing requirements: it has to divide the surface into areas that favor cell adhesion and those that resist it. In the first part of this article, we provide a basis for an understanding of how to achieve both tasks by discussing basic considerations concerning cell adhesion to matrices in vivo and ways to control the interactions between biomacromolecules and surfaces. We also include an overview of current strategies for the integration of living cells on planar devices that aims to provide a starting point for the exploration of the emerging field of cell-chip technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Goodsell DS (2004) Bionanotechnology – lessons from nature. Wiley, Hoboken, NJ

    Google Scholar 

  2. Staples M, Daniel K, Cima MJ, Langer R (2006) Application of micro- and nano-electromechanical devices to drug delivery. Pharmaceut Res 23:847–863

    CAS  Google Scholar 

  3. Santini JT, Cima MJ, Langer R (1999) A controlled-release microchip. Nature 397:335–338

    CAS  Google Scholar 

  4. Lee SJ, Lee SY (2004) Micro total analysis system (μ-TAS) in biotechnology. Appl Microbiol Biotechnol 64:289–299

    Google Scholar 

  5. Willner I, Willner B (2001) Biomaterials integrated with electronic elements: en route to bioelectronics. Trends Biotechnol 19:222–230

    CAS  Google Scholar 

  6. Voldman J, Gray ML, Schmidt MA (1999) Microfabrication in biology and medicine. Annu Rev Biomed Eng 1:401–425

    CAS  Google Scholar 

  7. Brown PO, Botstein D (1999) Exploring the new world of the genome with DNA microarrays. Nat Genet 21:33–37

    CAS  Google Scholar 

  8. Panda S, Sato TK, Hampton GM (2003) An arrays of insights: application of DNA chip technology in the study of cell biology. Trends Cell Biol 13(3):151–156

    CAS  Google Scholar 

  9. Norde W, Baszkin A (2000) Physical chemistry of biological interfaces. Marcel Dekker, New York

    Google Scholar 

  10. Templin MF, Stoll D, Schwenk JM et al (2003) Protein microarrays: promising tools for proteomic research. Proteomics 3:2155–2166

    CAS  Google Scholar 

  11. Lodish H, Berk A, Zipursky SL, Matsudaira P, Baltimore D, Darnell J (2000) Molecular cell biology, 4th edn. Freeman, New York

    Google Scholar 

  12. Alberts B, Bray D, Lewis J et al (2002) Molecular biology of the cell, 4th edn. Taylor & Francis, New York

    Google Scholar 

  13. Hynes RO (2002) Integrins: bidirectional, allosteric signaling machines. Cell 110:673–687

    CAS  Google Scholar 

  14. van der Flier A, Sonnenberg A (2001) Function and interactions of integrins. Cell Tissue Res 305:285–298

    Google Scholar 

  15. Humphries MJ (1990) The molecular basis and specificity of integrin ligand interactions. J Cell Sci 97:585

    CAS  Google Scholar 

  16. Zamir E, Geiger B (2001) Molecular complexity and dynamics of cell-matrix adhesions. J Cell Sci 114:3583–3590

    CAS  Google Scholar 

  17. Geiger B, Bershadsky A (2001) Assembly and mechanosensory function of focal contacts. Curr Opin Cell Biol 13:584–592

    CAS  Google Scholar 

  18. Petit V, Thiery JP (2000) Focal adhesions: structure and dynamics. Cell 92:477–494

    CAS  Google Scholar 

  19. Pande G (2000) The role of membrane lipids in regulation of integrin functions. Curr Opin Cell Biol 12:569–574

    CAS  Google Scholar 

  20. Albeda SM, Buck CA (1990) Integrins and other cell adhesion molecules. FASEB J 4: 2868–2880

    Google Scholar 

  21. Travis J (1993) Frontiers in biotechnology – biotech gets a grip on cell adhesion. Science 260:906–908

    CAS  Google Scholar 

  22. Giancotti FG, Ruoslahti E (1999) Transduction – integrin signalling. Science 285:1028–1032

    CAS  Google Scholar 

  23. Giancotti FG (2000) Complexity and specificity of integrin signalling. Nat Cell Biol 2:E13–E14

    CAS  Google Scholar 

  24. Pierschbacher MD, Ruoslahti E (1984) Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature 309(5963):30–33

    CAS  Google Scholar 

  25. Pierschbacher MD, Ruoslahti E (1984) Variants of the cell recognition site of fibronectin that retain attachment-promoting activity. Proc Natl Acad Sci 81:5985

    CAS  Google Scholar 

  26. Ruoslahti E, Pierschbacher MD (1987) New perspectives in cell-adhesion – RGD and integrins. Science 238:491–497

    CAS  Google Scholar 

  27. Ruoslahti E (1996) RGD and other recognition sequences for integrins. Annu Rev Cell Dev Biol 12:697–715

    CAS  Google Scholar 

  28. Wintermantel E, Ha SW (2003) Medizintechnik mit biokompatiblen Werkstoffen und Verfahren. Springer, Berlin

    Google Scholar 

  29. Hersel U, Kessler H (2003) RGD modified polymers: biomaterials for stimulated cell adhesion and beyond. Biomaterials 24:4385–4414

    CAS  Google Scholar 

  30. Yamada KM, Clark K (2002) Survival in three dimensions. Science 419:790–791

    CAS  Google Scholar 

  31. Andrade JD, Hlady V, Jeon SI (1996) Poly(ethylene oxide) and protein resitance – principles, problems, and possibilities. Adv Chem Ser 248:51–59

    CAS  Google Scholar 

  32. Horbett TA, Brash JL (1995) Proteins at interfaces II: fundamentals and application. Adv Symp Ser 602. American Chemical Society, Washington

    Google Scholar 

  33. Lanza RP, Langer R, Vacanti V (eds) (1997) Principles of tissue engineering, 2nd edn. Academic, San Diego

    Google Scholar 

  34. Ballauff M (2007) Spherical polyelectrolyte brushes. Progr Polym Sci 32:1135–1151

    CAS  Google Scholar 

  35. Römpp H, Falbe J, Regnitz M (1995) Römpp Chemie Lexikon. Thieme, Stuttgart

    Google Scholar 

  36. Frazier RA, Matthijs G, Davies MC et al (2000) Ccharacterization of protein-resistant dextran monolayers. Biomaterials 21:957–966

    CAS  Google Scholar 

  37. Rabinow BE, Ding YS, Qin C et al (1994) Biomaterials with permanent hydrophilic surfaces and low-protein adsorption properties. J Biomater Sci Polym Ed 6:91–109

    CAS  Google Scholar 

  38. Lehmann T, Rühe J (1999) Polyethyloxazoline monolayers for polymer supported biomembrane models. Macromol Symp 142:1–12

    CAS  Google Scholar 

  39. Wörz A, Berchthold B, Kandler S et al (2007) Tailormade surfaces for a guided adhesion and outgrowth of cells. MikroSystemTechnik Kongress 2007 Dresden

    Google Scholar 

  40. Petersen S, Loschonsky S, Prucker O et al (2009) Cell micro-arrays from surface-attached peptide-polymer monolayers. Physica Status Solidi A 206(3):468–473

    CAS  Google Scholar 

  41. Siegers C, Biesalski M, Haag R (2004) Self-assembled monolayers of dentritic polyglycerol derivatives on gold that resist the adsorption of proteins. Chem Eur J 10:2831–2838

    CAS  Google Scholar 

  42. Harris JM, Zalipsky S (1987) Poly(ethylene glycol): chemistry and biological applications. American Chemical Society, Washington

    Google Scholar 

  43. Jenney CR, Anderson JM (1999) Effects of surface-coupled polyethylene oxide in human macrophage adhesion and foreign body giant cell formation in vitro. J Biomed Mater Res 44:206–216

    CAS  Google Scholar 

  44. Jeon SI, Lee JH, Andrade JD et al (1991) Protein surface interactions in the presence of poly(ethylene oxide). 1. Simplified theory. J Colloids Interf Sci 142:149–158

    CAS  Google Scholar 

  45. Jeon SI, Andrade JD (1991) Protein surface interactions in the presence of poly(ethylene oxide). 2. Effect of protein size. J Colloids Interf Sci 142:159–166

    CAS  Google Scholar 

  46. Yang ZH, Galloway JA, Yu HU (1999) Protein interactions with poly(ethylene glycol) self-assembled monolayers on glass substrates: diffusion and adsorption. Langmuir 15: 8405–8411

    CAS  Google Scholar 

  47. Prime KL, Whitesides GM (1993) Adsorption of proteins onto surfaces containing end-attached oligo (ethylene oxide) – A model system using self-assembled monolayers. J Am Chem Soc 115:10714–10721

    CAS  Google Scholar 

  48. Ostuni E, Chapman RG, Holmlin RE, Takayama S, Whitesides GM et al (2001) A survey of structure-property relationships of surfaces that resist the adsorption of proteins. Langmuir 17:5605–5620

    CAS  Google Scholar 

  49. Nagaoka S, Mori Y, Takiuchi H et al. (1984) In: Shalaby SH, Hoffman AS, Ratner BD, Horbett TA et al (eds) (1984) Polymers as biomaterials. Plenum, New York, pp 361–374

    Google Scholar 

  50. Harder P, Grunze M, Dahint R et al (1998) Molecular conformation in oligo (ethylene glycol)-terminated self-assembled monolayers on gold and silver surfaces determines their ability to resist protein adsorption. J Phys Chem B 102:426–436

    CAS  Google Scholar 

  51. Matsuura H, Fukuhara K (1985) Conformational-analysis of poly(oxyethylene) chain in aqueous-solution as a hydrophilic moiety of non-ionic surfactants. J Mol Struct 126: 251–260

    CAS  Google Scholar 

  52. Wang RCL, Kreuzer HJ, Grunze M (1997) Molecular conformation and solvation of oligo(ethylen glycol)-terminated self-assembled monolayers and their resistance to protein adsorption. J Phys Chem 101:9767–9773

    CAS  Google Scholar 

  53. Chapman RG, Ostuni E, Takayama S et al (2000) Surveying for surfaces that resist the adsorption of proteins. J Am Chem Soc 122:8303–8304

    CAS  Google Scholar 

  54. Luk Y-Y, Kato M, Mrksich M (2000) Self-assembled monolayers of alkanethiolates presenting mannitol groups are inert to protein adsorption and cell attachment. Langmuir 16:9604–9608

    CAS  Google Scholar 

  55. Chapman RG, Ostuni E, Liang ME et al (2001) Polymeric thin films that resist the adsorption of proteins and the adhesion of bacteria. Langmuir 17:1225–1233

    CAS  Google Scholar 

  56. Advincula RC, Brittain WJ, Caster KC, Rühe J (eds) (2004) Polymer brushes: synthesis, characterization and applications. Wiley, UK

    Google Scholar 

  57. Barbey R, Lavanant L, Paripovic D et al (2009) Polymer brushes via surface-initiated controlled radical polymerization: synthesis, characterization, properties, and applications. Chem Rev 109:5437–5527

    CAS  Google Scholar 

  58. Szleifer I, Carignano MA (2000) Tethered polymer layers: phase transitions and reduction of protein adsorption. Rapid Commun 21:423–448

    CAS  Google Scholar 

  59. Fristrup CJ, Jankova K, Hvilsted S (2009) Surface-initiated radical polymerization – a technique to develop biofunctional coatings. Soft Matter 23:4623–4634

    Google Scholar 

  60. Peppas NA, Huang Y, Torres-Lugo M et al (2000) Physicochemical foundations and structural design of hydrogels in medicine and biology. Annu Rev Biomed Eng 2:9–29

    CAS  Google Scholar 

  61. Park JH, Bae YH (2002) Hydrogels based on poly(ethylene oxide) and poly(tetramethylene oxide) or poly(dimethylsiloxane): synthesis, characterization, in vitro protein adsorption and platelet adhesion. Biomaterials 23:1797–1808

    CAS  Google Scholar 

  62. Haynes CA, Norde W (1995) Structures and stabilities of adsorbed protein of colloid and interface. Science 169(2):313–328

    CAS  Google Scholar 

  63. Giacomelli CE, Norde W (2001) The adsorption-desorption cycle. Reversibility of the BSA-silica system. J Colloids Interf Sci 233(2):234–240

    CAS  Google Scholar 

  64. Norde W, Giacomelli CE (1999) Conformational changes in proteins at interfaces: from solution to the interface, and back. Macromol Symp 145:125–136

    CAS  Google Scholar 

  65. Norde W, Giacomelli CE (2000) BSA structural changes during homomolecular exchange between the adsorbed and the dissolved states. J Biotechnol 79(3):259–268

    CAS  Google Scholar 

  66. Steele JG, Dalton BA, Johnson G et al (1993) Polystyrene chemistry affects vitronectin activity – an explanation for cell attachment to tissue-culture polystyrene but not to unmodified polystyrene. J Biomed Mater Res 27(7):927–940

    CAS  Google Scholar 

  67. Lewandowska K, Balachander N, Sukenik CN et al (1989) Modulation of fibronectin adhesive functions for fibroblasts and neural cells by chemically derivatized substrata. J Cell Physiol 141(2):334–345

    CAS  Google Scholar 

  68. Grinnell F, Feld MK (1981) Adsorption characteristics of plasma fibronectin in relationship to biological-activity. J Biomed Mater Res 15:363–381

    CAS  Google Scholar 

  69. Liu LY, Chen SF, Giachelli CM et al (2005) Controlling osteopontin orientation on surfaces to modulate endothelial cell adhesion. J Biomed Mater Res A 74A(1):23–31

    CAS  Google Scholar 

  70. Taubenberger A, Woodruff MA, Bai H F et al (2010) The effect of unlocking RGD-motifs in collagen I on pre-osteoblast adhesion and differentiation. Biomaterials 31:2827–2835

    CAS  Google Scholar 

  71. Egles C, Shamis Y, Mauney JR et al (2008) Denatured collagen modulates the phenotype of normal and wounded human skin equivalents. J Invest Dermatol 128:1830–1837

    CAS  Google Scholar 

  72. Sivaraman B, Latour RA (2010) The adherence of platelets to adsorbed albumin by receptor-mediated recognition of binding sites exposed by adsorption-induced unfolding. Biomaterials 31:1036–1044

    CAS  Google Scholar 

  73. Horbett TA (2003) Biological activity of adsorbed proteins. In: Malmsten M (ed) Biopolymers at interfaces, 2nd edn. Marcel Dekker, New York

    Google Scholar 

  74. Horbett TA (1994) The role of adsorbed proteins in animal-cell adhesion. Colloids Surf B Biointerf 2(1–3):225–240

    CAS  Google Scholar 

  75. Fabriziushoman DJ, Cooper SL (1991) Competitive adsorption of vitronectin with albumin, fibrinogen, and fibronectin on polymeric biomaterials. J Biomed Mater Res 25(8):953–971

    CAS  Google Scholar 

  76. Horbett TA (1996) Proteins: structure, properties, and adsorption to surfaces. In: Ratner BD, Hoffman AS, Schoen FJ, Lemons JE et al (eds) Biomaterials science. Academic, San Diego

    Google Scholar 

  77. Slack SM, Horbett TA (1988) Physicochemical and biochemical aspects of fibrinogen adsorption from plasma and binary protein solutions onto polyethylene and glass. J Colloids Interf Sci 124(2):535–551

    CAS  Google Scholar 

  78. Bale MD, Wohlfahrt LA, Mosher DF et al (1989) Identification of vitronectin as a major plasma-protein adsorbed on polymer surfaces of different copolymer composition. Blood 74(8):2698–2706

    CAS  Google Scholar 

  79. Green RJ, Davies MC, Roberts CJ et al (1999) Competitive protein adsorption as observed by surface plasmon resonance. Biomaterials 20(4):385–391

    CAS  Google Scholar 

  80. Vroman L, Adams AL (1986) Adsorption of proteins out of plasma and solutions in narrow spaces. J Colloids Interf Sci 111(2):391–402

    CAS  Google Scholar 

  81. Wertz CF, Santore MM (1999) Adsorption and relaxation kinetics of albumin and fibrinogen on hydrophobic surfaces: single-species and competitive behavior. Langmuir 15(26): 8884–8894

    CAS  Google Scholar 

  82. Slack SM, Horbett TA (1995) The Vroman effect – a critical review. Proteins Interf Ii 602: 112–128

    CAS  Google Scholar 

  83. Jung SY, Lim SM, Albertorio F et al (2003) The Vroman effect: a molecular level description of fibrinogen displacement. J Am Chem Soc 125(42):12782–12786

    CAS  Google Scholar 

  84. Krishnan A, Siedlecki CA, Vogler EA (2004) Mixology of protein solutions and the Vroman effect. Langmuir 20(12):5071–5078

    CAS  Google Scholar 

  85. Brown LF, Dubin D, Lavigne L et al (1993) Macrophages and fibroblasts express embryonic fibronectins during cutaneous wound-healing. Am J Pathol 142(3):793–801

    CAS  Google Scholar 

  86. Werb Z (1997) ECM and cell surface proteolysis: regulating cellular ecology. Cell 91(4): 439–442

    CAS  Google Scholar 

  87. Grinnell F (1986) Focal adhesion sites and the removal of substratum-bound fibronectin. J Cell Biol 103(6):2697–2706

    CAS  Google Scholar 

  88. Nelson CM, Raghavan S, Tan JL et al (2003) Degradation of micropatterned surfaces by cell-dependent and -independent processes. Langmuir 19(5):1493–1499

    CAS  Google Scholar 

  89. Fink J, Thery M, Azioune A et al (2007) Comparative study and improvement of current cell micro-patterning techniques. Lab on a Chip 7(6):672–680

    CAS  Google Scholar 

  90. Ito Y, Nogawa M, Taheda M et al (2005) Photo-reactive polyvinylalcohol for photo-immobilized microarray. Biomaterials 26(2):211–216

    CAS  Google Scholar 

  91. Wilson CJ, Clegg RE, Leawesley DI et al (2005) Mediation of biomaterial-cell interactions by adsorbed proteins: a review. Tissue Eng 11(1–2):1–18

    CAS  Google Scholar 

  92. Ostuni E, Kane R, Chen CS et al (2000) Patterning mammalian cells using elastomeric membranes. Langmuir 16(20):7811–7819

    CAS  Google Scholar 

  93. Frimat J-P, Menne H, Michels A et al (2009) Plasma stencilling methods for cell patterning. Anal Bioanal Chem 395(3):601–609

    CAS  Google Scholar 

  94. Underwood PA, Steele JG, Dalton BA (1993) Effects of polystyrene surface-chemistry on the biological-activity of solid-phase fibronectin and vitronectin, analyzed with monoclonal-antibodies. J Cell Sci 104:793–803

    CAS  Google Scholar 

  95. Curtis ASG (1984) The competitive effects of serum-proteins on cell-adhesion. J Cell Sci 71:17–35

    CAS  Google Scholar 

  96. Tourovskaia A, Barber T, Wickes BT et al (2003) Micropatterns of chemisorbed cell adhesion-repellent films using oxygen plasma etching and elastomeric masks. Langmuir 19(11): 4754–4764

    CAS  Google Scholar 

  97. Detrait E, Lhoest JB, Knoops B et al (1998) Orientation of cell adhesion and growth on patterned heterogeneous polystyrene surface. J Neurosci Methods 84(1–2):193–204

    CAS  Google Scholar 

  98. Peterbauer T, Heitz J, Olbrich M et al (2006) Simple and versatile methods for the fabrication of arrays of live mammalian cells. Lab on a Chip 6(7):857–863

    CAS  Google Scholar 

  99. Chen CS, Mrksich M, Huang S et al (1998) Micropatterned surfaces for control of cell shape, position, and function. Biotechnol Prog 14(3):356–363

    CAS  Google Scholar 

  100. Singhvi R, Kumar A, Lopez GP et al (1994) Engineering cell-shape and function. Science 264(5159):696–698

    CAS  Google Scholar 

  101. Mrksich M, Dike LE, Tien J et al (1997) Using microcontact printing to pattern the attachment of mammalian cells to self-assembled monolayers of alkanethiolates on transparent films of gold and silver. Exp Cell Res 235(2):305–313

    CAS  Google Scholar 

  102. Iwanaga S, Akiyama Y, Kikuchi A et al (2005) Fabrication of a cell array on ultrathin hydrophilic polymer gels utilising electron beam irradiation and UV excimer laser ablation. Biomaterials 26(26):5395–5404

    CAS  Google Scholar 

  103. Pesen D, Heinz WF, Werbin JL et al (2007) Electron beam patterning of fibronectin nanodots that support focal adhesion formation. Soft Matter 3:1280–1284

    CAS  Google Scholar 

  104. Bouaidat S, Berendsen C, Thomsen P et al (2004) Micro patterning of cell and protein non-adhesive plasma polymerized coatings for biochip applications. Lab on a Chip 4(6):632–637

    CAS  Google Scholar 

  105. Chang WC, Sretavan DW (2008) Novel high-resolution micropatterning for neuron culture using polylysine adsorption on a cell repellant, plasma-polymerized background. Langmuir 24(22):13048–13057

    CAS  Google Scholar 

  106. Revzin A, Tompkins RG, Toner M (2003) Surface engineering with poly(ethylene glycol) photolithography to create high-density cell arrays on glass. Langmuir 19(23):9855–9862

    CAS  Google Scholar 

  107. Berchtold B (2005) Oberflächengebundene Polymernetzwerke zur Re-Endothelialisierung von porcinen Herzklappenbioprothesen. Department of Microsystems Engineering, Albert-Ludwigs-Universität, Freiburg, Germany

    Google Scholar 

  108. Prucker O, Naumann CA, Ruhe J et al (1999) Photochemical attachment of polymer films to solid surfaces via monolayers of benzophenone derivatives. J Am Chem Soc 121(38): 8766–8770

    CAS  Google Scholar 

  109. Worz A, Berchtold B, Kandler S (2007) Tailor-made surfaces for the guidance of neuronal cells. Tissue Eng 13:908–909

    Google Scholar 

  110. Chien HW, Chang ZY, Tsai WB (2009) Spatial control of cellular adhesion using photo-crosslinked micropatterned polyelectrolyte multilayer films. Biomaterials 30(12):2209–2218

    CAS  Google Scholar 

  111. Cimetta E, Pizzato S, Bollini S et al (2009) Production of arrays of cardiac and skeletal muscle myofibers by micropatterning techniques on a soft substrate. Biomed Microdevices 11(2):389–400

    CAS  Google Scholar 

  112. Ruiz A, Valsesia A, Bretagnol F et al (2007) Large-area protein nano-arrays patterned by soft lithography. Nanotechnology 18:1–6

    Google Scholar 

  113. McDevitt TC, angello JC, Whitney ML et al (2002) In vitro generation of differentiated cardiac myofibers on micropatterned laminin surfaces. J Biomed Mater Res 60(3):472–479

    Google Scholar 

  114. McDevitt TC, woodhouse KA, Hauschka SD et al (2003) Spatially organized layers of cardiomyocytes on biodegradable polyurethane films for myocardial repair. J Biomed Mater Res A 66A(3):586–595

    Google Scholar 

  115. Gasteier P, Reska A, Schulte P et al (2007) Surface grafting of PEO-based star-shaped molecules for bioanalytical and biomedical applications. Macromol Biosci 7:1010–1023

    CAS  Google Scholar 

  116. Ahmed WW, Wolfram T, Goldyn AM et al (2010) Myoblast morphology and organization on biochemically micro-patterned hydrogel coatings under cyclic mechanical strain. Biomaterials 31:250–258

    CAS  Google Scholar 

  117. Reska A, Gasteier P, Schulte P et al (2008) Ultrathin coatings with change in reactivity over time enable functional in vitro networks of insect neurons. Adv Mater 20:2751–2755

    CAS  Google Scholar 

  118. Folch A, Toner M (2000) Microengineering of cellular interactions. Annu Rev Biomed Eng 2:227–256

    CAS  Google Scholar 

  119. Delamarche E, Bernard A, Schmid H et al (1997) Patterned delivery of immunoglobulins to surfaces using microfluidic networks. Science 276(5313):779–781

    CAS  Google Scholar 

  120. Folch A, Toner M (1998) Cellular micropatterns on biocompatible materials. Biotechnol Prog 14(3):388–392

    CAS  Google Scholar 

  121. Cuvelier D, Rossier O, Bassereau P et al (2003) Micropatterned “adherent/repellent” glass surfaces for studying the spreading kinetics of individual red blood cells onto protein-decorated substrates. Eur Biophys J Biophys Lett 32(4):342–354

    CAS  Google Scholar 

  122. Zhu H, Snyder M (2003) Protein chip technology. Curr Opin Chem Biol 7(1):55–63

    CAS  Google Scholar 

  123. MacBeath G, Schreiber SL (2000) Printing proteins as microarrays for high-throughput function determination. Science 289(5485):1760–1763

    CAS  Google Scholar 

  124. Revzin A, Rajagopalan P, Tilles AW et al (2004) Designing a hepatocellular microenvironment with protein microarraying and poly(ethylene glycol) photolithography. Langmuir 20(8):2999–3005

    CAS  Google Scholar 

  125. Katz BZ, Zamir E, Bershadsky A et al (2000) Physical state of the extracellular matrix regulates the structure and molecular composition of cell-matrix adhesions. Mol Biol Cell 11(3):1047–1060

    CAS  Google Scholar 

  126. Pelham RJ, Wang YL (1998) Cell locomotion and focal adhesions are regulated by the mechanical properties of the substrate. Biol Bull 194(3):348–349

    CAS  Google Scholar 

  127. Choquet D, Felsenfeld d P, Sheetz MP (1997) Extracellular matrix rigidity causes strengthening of integrin-cytoskeleton linkages. Cell 88(1):39–48

    Google Scholar 

  128. Castel S, Pagan R, Mitjans F et al (2001) RGD peptides and monoclonal antibodies, antagonists of alpha(v)-integrin, enter the cells by independent endocytic pathways. Lab Invest 81(12):1615–1626

    CAS  Google Scholar 

  129. Zamir E, Geiger B (2001) Molecular complexity and dynamics of cell-matrix adhesions. J Cell Sci 114(20):3583–3590

    CAS  Google Scholar 

  130. Memmo LM, McKeown-Longo P (1998) The alpha v beta 5 integrin functions as an endocytic receptor for vitronectin. J Cell Sci 111:425–433

    CAS  Google Scholar 

  131. Gaebel K, Feuerstein IA (1991) Platelets process adsorbed protein – a morphological-study. Biomaterials 12(6):597–602

    CAS  Google Scholar 

  132. Tirrell M, Kokkoli E, Biesalski M (2002) The role of surface science in bioengineered materials. Surf Sci 500(1–3):61–83

    CAS  Google Scholar 

  133. Biesalski M, Tu R, Tirrell M (2005) Polymerized vesicles carrying molecular recognition sites. Langmuir 21:5663–5666

    CAS  Google Scholar 

  134. Biesalski M, Knaebel A, Tu R et al (2006) Cell adhesion on a polymerized peptide-amphiphile monolayer. Biomaterials 27(8):1259–1269

    CAS  Google Scholar 

  135. Loschonsky S, Shroff K, Wörz A et al (2008) Surface-attached PDMAA-GRGDSP hybrid polymer monolayers that promote the adhesion of living cells. Biomacromolecules 9: 543–552

    CAS  Google Scholar 

  136. Zhu J, Tang C, Kottke-Marchant K et al (2009) Design and synthesis of biomimetic hydrogel scaffolds with controlled organization of cyclic RGD peptides. Bioconjug Chem 20(2):333–339

    CAS  Google Scholar 

  137. Pakalns T, Haverstick KL, Fields GB et al (1999) Cellular recognition of synthetic peptide amphiphiles in self-assembled monolayer films. Biomaterials 20(23–24):2265–2279

    CAS  Google Scholar 

  138. Hirano Y, Okuno M, Hayashi T et al (1993) Cell-attachment activities of surface immobilized oligopeptides RGD, RGDS, RGDV, RGDT, and YIGSRigsr toward five cell-lines. J Biomater Sci Polym Ed 4(3):235–243

    CAS  Google Scholar 

  139. Mardilovich A, Craig JA, McCammon MQ et al (2006) Design of a novel fibronectin-mimetic peptide-amphiphile for functionalized biomaterials. Langmuir 22(7):3259–3264

    CAS  Google Scholar 

  140. Li FY, Redick SD, Erickson HP et al (2003) Force measurements of the alpha(5)beta(1) integrin-fibronectin interaction. Biophys J 84(2):1252–1262

    CAS  Google Scholar 

  141. Eisenberg JL, Piper JL, Mrksich M (2009) Using self-assembled monolayers to model cell adhesion to the 9th and 10th type III domains of fibronectin. Langmuir 25(24):13942–13951

    CAS  Google Scholar 

  142. Craig WS, Cheng S, Mullen DG et al (1995) Concept and progress in the development of RGD-containing peptide pharmaceuticals. Biopolymer 37(2):157–175

    CAS  Google Scholar 

  143. Beer JH, Springer KT, Coller BS (1992) Immobilized Arg-Gly-Asp (RGD) peptides of varying lengths as structural probes of the platelet glycoprotein-IIb/IIIa receptor. Blood 79(1):117–128

    CAS  Google Scholar 

  144. Kantlehner M, Schaffner P, Finsinger D et al (2000) Surface coating with cyclic RGD peptides stimulates osteoblast adhesion and proliferation as well as bone formation. Chembiochem 1(2):107–114

    CAS  Google Scholar 

  145. Massia SP, Hubbell JA (1991) An RGD spacing of 440 nm is sufficient for integrin alpha-V-beta-3-mediated fibroblast spreading and 140 nm for focal contact and stress fiber formation. J Cell Biol 114(5):1089–1100

    CAS  Google Scholar 

  146. Maheshwari G, Brown G, Lauffenburger DA et al (2000) Cell adhesion and motility depend on nanoscale RGD clustering. J Cell Sci 113(10):1677–1686

    CAS  Google Scholar 

  147. Arnold M, Schwieder M, Blummel J et al (2009) Cell interactions with hierarchically structured nano-patterned adhesive surfaces. Soft Matter 5(1):72–77

    CAS  Google Scholar 

  148. Wolfram T, Spatz JP, Burgess RW (2008) Cell adhesion to agrin presented as a nanopatterned substrate is consistent with an interaction with the extracellular matrix and not transmembrane adhesion molecules. BMC Cell Biol 9:64

    Google Scholar 

  149. Arnold M, Cavalcanti-Adam EA, Glass R et al (2004) Activation of integrin function by nanopatterned adhesive interfaces. Chemphyschem 5:383–388

    CAS  Google Scholar 

  150. Ruoslahti E (1996) RGD and other recognition sequences for integrins. Annu Rev Cell Dev Biol 12:697–715

    CAS  Google Scholar 

  151. Kato R, Kaga C, Kunimatsu M et al (2006) Peptide array-based interaction assay of solid-bound peptides and anchorage-dependant cells and its effectiveness in cell-adhesive peptide design. J Biosci Bioeng 101(6):485–495

    CAS  Google Scholar 

  152. Gobin AS, West JL (2003) Val-ala-pro-gly, an elastin-derived non-integrin ligand: smooth muscle cell adhesion and specificity. J Biomed Mat Res A 67A(1):255–259

    CAS  Google Scholar 

  153. Hubbell JA, Massia SP, Desai NP et al (1991) Endothelial cell-selective materials for tissue engineering in the vascular graft via a new receptor. Biotechnology 9(6):568–572

    CAS  Google Scholar 

  154. Plouffe BD, Njoka DN, Harris J et al (2007) Peptide-mediated selective adhesion of smooth muscle and endothelial cells in microfluidic shear flow. Langmuir 23(9):5050–5055

    CAS  Google Scholar 

  155. Plouffe BD, Radisic M, Murthy SK (2008) Microfluidic depletion of endothelial cells, smooth muscle cells, and fibroblasts from heterogeneous suspensions. Lab on a Chip 8(3):462–472

    CAS  Google Scholar 

  156. Zhang SG, Yan L, Altman M et al (1999) Biological surface engineering: a simple system for cell pattern formation. Biomaterials 20(13):1213–1220

    CAS  Google Scholar 

  157. Takahashi H, Emoto K, Dubey M et al (2008) Imaging surface immobilization chemistry: correlation with cell patterning on non-adhesive hydrogel thin films. Adv Funct Mater 18(14):2079–2088

    CAS  Google Scholar 

  158. Dubey M, Emoto K, Cheng F et al (2009) Surface analysis of photolithographic patterns using ToF-SIMS and PCA. Surf and Interface Anal 41:645–652

    CAS  Google Scholar 

  159. Meyers SR, Khoo XJ, Huang X et al (2009) The development of peptide-based interfacial biomaterials for generating biological functionality on the surface of bioinert materials. Biomaterials 30(3):277–286

    CAS  Google Scholar 

  160. Gauvreau V, Laroche G (2005) Micropattern printing of adhesion, spreading, and migration peptides on poly(tetrafluoroethylene) films to promote endothelialization. Bioconjug Chem 16(5):1088–1097

    CAS  Google Scholar 

  161. Monchaux E, Vermette P (2007) Bioactive microarrays immobilized on low-fouling surfaces to study specific endothelial cell adhesion. Biomacromolecules 8:3668–3673

    CAS  Google Scholar 

  162. Buxboim A, Ivanovska IL, Discher D (2010) Matrix elasticity, cytoskeletal forces and physics of the nucleus: how deeply do cells ‘feel’ outside and in? J Cell Sci 123:297–308

    CAS  Google Scholar 

  163. Montagne K, Komori K, Yang F et al (2009) A micropatterned cell array with an integrated oxygen-sensitive fluorescent membrane. Photochem Photobiol Sci 8(11):1529–1533

    CAS  Google Scholar 

  164. Komori K, Nada J, Nishikawa M et al (2009) Simultaneous evaluation of toxicities using a mammalian cell array chip prepared by photocatalytic lithography. Anal Chim Acta 653(2):222–227

    CAS  Google Scholar 

  165. Kikuchi K, Sumaru K, Edahiro JI et al (2009) Stepwise assembly of micropatterned co-cultures using photoresponsive culture surfaces and its application to hepatic tissue arrays. Biotechnol Bioeng 103(3):552–561

    CAS  Google Scholar 

  166. Khetani SR, Bhatia SN (2008) Microscale culture of human liver cells for drug development. Nat Biotechnol 26(1):120–126

    CAS  Google Scholar 

  167. Wang L, Zhu J, Deng C et al (2008) An automatic and quantitative on-chip cell migration assay using self-assembled monolayers combined with real-time cellular impedance sensing. Lab on a Chip 8(6):872–878

    CAS  Google Scholar 

  168. Ochsner M, Dusseiller MR, Grandin HM et al (2007) Micro-well arrays for 3D shape control and high resolution analysis of single cells. Lab on a Chip 7(8):1074–1077

    CAS  Google Scholar 

  169. Shim HW, Lee JH, Hwang TS et al (2007) Patterning of proteins and cells on functionalized surfaces prepared by polyelectrolyte multilayers and micromolding in capillaries. Biosens Bioelectron 22(12):3188–3195

    CAS  Google Scholar 

  170. Rosenthal A, Macdonald A, Voldman J (2007) Cell patterning chip for controlling the stem cell microenvironment. Biomaterials 28(21):3208–3216

    CAS  Google Scholar 

  171. Ostuni E, chen CS, Ingber DE et al (2001) Selective deposition of proteins and cells in arrays of microwells. Langmuir 17(9):2828–2834

    Google Scholar 

  172. Ruiz A, Buzanska L, Gilliland D et al (2008) Micro-stamped surfaces for the patterned growth of neural stem cells. Biomaterials 29(36):4766–4774

    CAS  Google Scholar 

  173. Hatakeyama H, Kikuchi A, Yamato M et al (2007) Patterned biofunctional designs of ther- 1172 moresponsive surfaces for spatiotemporally controlled cell adhesion, growth, and thermally 1173 induced detachment. Biomaterials 28(25):3632–3643

    CAS  Google Scholar 

  174. Moon JJ, Hahn MS, Kim I et al (2009) Micropatterning of poly(ethylene glycol) diacrylate hydrogels with biomolecules to regulate and guide endothelial morphogenesis. Tissue Eng Part A 15(3):579–585

    CAS  Google Scholar 

  175. Lee SH, Moon JJ, West JL (2008) Three-dimensional micropatterning of bioactive hydrogels via two-photon laser scanning photolithography for guided 3D cell migration. Biomaterials 29(20):2962–2968

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Biesalski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Petersen, S., Gattermayer, M., Biesalski, M. (2010). Hold on at the Right Spot: Bioactive Surfaces for the Design of Live-Cell Micropatterns. In: Börner, H., Lutz, JF. (eds) Bioactive Surfaces. Advances in Polymer Science, vol 240. Springer, Berlin, Heidelberg. https://doi.org/10.1007/12_2010_77

Download citation

Publish with us

Policies and ethics