Skip to main content

Antimicrobial Surfaces

  • Chapter
  • First Online:
Bioactive Surfaces

Part of the book series: Advances in Polymer Science ((POLYMER,volume 240))

Abstract

In this review, the general principles of antimicrobial surfaces will be discussed in detail. Because many common products that keep microbes off surfaces have been banned in the past decade, the search for alternatives is in full run. In recent research, numerous new ways to produce so-called self-sterilizing surfaces have been introduced. These technologies are discussed with respect to their mechanism, particularly focusing on the distinction between biocide-releasing and non-releasing contact-active systems. New developments in the catalytic formation of biocides and their advantages and limitations are also covered. The combination of several mechanisms in one surface modification has considerable benefits, and will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lode HM (2009) Clinical impact of antibiotic-resistant Gram-positive pathogens. Clin Microbiol Infect 15:212–217

    Article  CAS  Google Scholar 

  2. Gonzales FP, Maisch T (2010) XF drugs: a new family of antibacterials. Drug News Perspect 23:167–174

    Article  CAS  Google Scholar 

  3. Klevens RM, Morrison MA, Nadle J et al. (2007) Invasive methicillin-resistant Staphylococcus aureus infections in the United States. JAMA 298:1763–1771

    Article  CAS  Google Scholar 

  4. Zilberman M, Elsner JJ (2008) Antibiotic-eluting medical devices for various applications. J Control Release 130:202–215

    Article  CAS  Google Scholar 

  5. Meyer B (2003) Approaches to prevention, removal and killing of biofilms. Int Biodeterior Biodegradation 51:249–253

    Article  CAS  Google Scholar 

  6. Landini P, Antoniani D, Burgess JG et al. Molecular mechanisms of compounds affecting bacterial biofilm formation and dispersal. Appl Microbiol Biotechnol 86:813–823

    Google Scholar 

  7. Mah T-F, Pitts B, Pellock B et al. (2003) A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance. Nature 426:306–310

    Article  CAS  Google Scholar 

  8. Tiller JC (2008) Coatings for prevention or deactivation of biological contamination. In: Kohli R, Mittal KL (eds) Developments in surface contamination and cleaning. William Andrew, Norwich, NY, pp 1013–1065

    Chapter  Google Scholar 

  9. Lichter JA, Van Vliet KJ, Rubner MF (2009) Design of antibacterial surfaces and interfaces: polyelectrolyte multilayers as a multifunctional platform. Macromolecules 42:8573–8586

    Article  CAS  Google Scholar 

  10. Kenawy E-R, Worley SD, Broughton R (2007) The chemistry and applications of antimicrobial polymers: a state-of-the-art review. Biomacromolecules 8:1359–1384

    Article  CAS  Google Scholar 

  11. Tew GN, Scott RW, Klein ML et al. (2010) De novo design of antimicrobial polymers, foldamers, and small molecules: from discovery to practical applications. Acc Chem Res 43:30–39

    Article  CAS  Google Scholar 

  12. Tiller JC (2006) Silver-based antimicrobial coatings. ACS Symp Ser 924:215–231

    Article  CAS  Google Scholar 

  13. Gettings RL, White WC (1987) Formation of polymeric antimicrobial surfaces from organofunctional silanes. Polym Mater Sci Eng 57:181–185

    CAS  Google Scholar 

  14. Kanazawa A, Ikeda T, Endo T (1993) Polymeric phosphonium salts as a novel class of cationic biocides. III. Immobilization of phosphonium salts by surface photografting and antibacterial activity of the surface-treated polymer films. J Poly Sci A Poly Chem 31: 1467–1472

    CAS  Google Scholar 

  15. Tiller JC, Sprich C, Hartmann L (2005) Amphiphilic conetworks as regenerative controlled releasing antimicrobial coatings. J Control Release 103:355–367

    Article  CAS  Google Scholar 

  16. Huttinger KJ, Muller H, Bomar MT (1982) Synthesis and effect of carrier-bound disinfectants. J Colloid Interface Sci 88:274–285

    Article  Google Scholar 

  17. Eknoian MW, Worley SD, Bickert J et al. (1998) Novel antimicrobial N-halamine polymer coatings generated by emulsion polymerization. Polymer 40:1367–1371

    Article  Google Scholar 

  18. Fallgren C, Utt M, Petersson AC et al. (1998) In vitro anti-staphylococcal activity of heparinized biomaterials bonded with combinations of rifampicin. Zentralbl Bakteriol 287:19–31

    CAS  Google Scholar 

  19. Brash JL, Uniyal S (1979) Dependence of albumin-fibrinogen simple and competitive adsorption on surface-properties of biomaterials. J Poly Sci C Poly Symp (66):377–389

    Article  CAS  Google Scholar 

  20. An YH, Friedman RJ (1998) Concise review of mechanisms of bacterial adhesion to biomaterial surfaces. J Biomed Mater Res 43:338–348

    Article  CAS  Google Scholar 

  21. Hermansson M (1999) The DLVO theory in microbial adhesion. Colloids Surf B Biointerfaces 14:105–119

    Article  CAS  Google Scholar 

  22. Humphries M, Nemcek J, Cantwell JB et al. (1987) The use of graft-copolymers to inhibit the adhesion of bacteria to solid-surfaces. FEMS Microbiol Ecol 45:297–304

    Article  CAS  Google Scholar 

  23. Jansen B, Kohnen W (1995) Prevention of biofilm formation by polymer modification. J Ind Microbiol 15:391–396

    Article  CAS  Google Scholar 

  24. Park KD, Kim YS, Han DK et al. (1998) Bacterial adhesion on PEG modified polyurethane surfaces. Biomaterials 19:851–859

    Article  CAS  Google Scholar 

  25. Tiller JC, Bonner G, Pan L-C et al. (2001) Improving biomaterial properties of collagen films by chemical modification. Biotechnol Bioeng 73:246–252

    Article  CAS  Google Scholar 

  26. Lewis AL (2000) Phosphorylcholine-based polymers and their use in the prevention of biofouling. Colloids Surf B Biointerfaces 18:261–275

    Article  CAS  Google Scholar 

  27. Jiang SY, Cao ZQ (2010) Ultralow-fouling, functionalizable, and hydrolyzable zwitterionic materials and their derivatives for biological applications. Adv Mater 22:920–932

    CAS  Google Scholar 

  28. Cheng G, Zhang Z, Chen SF et al. (2007) Inhibition of bacterial adhesion and biofilm formation on zwitterionic surfaces. Biomaterials 28:4192–4199

    Article  CAS  Google Scholar 

  29. Ista LK, Perez-Luna VH, Lopez GP (1999) Surface-grafted, environmentally sensitive polymers for biofilm release. Appl Environ Microbiol 65:1603–1609

    CAS  Google Scholar 

  30. Pratt-Terpstra IH, Weerkamp AH, Busscher HJ (1987) Adhesion of oral Streptococci from a flowing suspension to uncoated and albumin-coated surfaces. J Gen Microbiol 133: 3199–3206

    CAS  Google Scholar 

  31. Lichter JA, Thompson MT, Delgadillo M et al. (2008) Substrata mechanical stiffness can regulate adhesion of viable bacteria. Biomacromolecules 9:1571–1578

    Article  CAS  Google Scholar 

  32. Dowling DP, Donnelly K, McConnell ML et al. (2001) Deposition of anti-bacterial silver coatings on polymeric substrates. Thin Solid Films 398–399:602–606

    Article  Google Scholar 

  33. Charville GW, Hetrick EM, Geer CB et al. (2008) Reduced bacterial adhesion to fibrinogen-coated substrates via nitric oxide release. Biomaterials 29:4039–4044

    Article  CAS  Google Scholar 

  34. Kristensen JB, Meyer RL, Laursen BS et al. (2008) Antifouling enzymes and the biochemistry of marine settlement. Biotechnol Adv 26:471–481

    Article  CAS  Google Scholar 

  35. Leroy C, Delbarre-Ladrat C, Ghillebaert F et al. (2008) Effects of commercial enzymes on the adhesion of a marine biofilm-forming bacterium. Biofouling 24:11–22

    Article  CAS  Google Scholar 

  36. Tasso M, Pettitt ME, Cordeiro AL et al. (2009) Antifouling potential of Subtilisin A immobilized onto maleic anhydride copolymer thin films. Biofouling 25:505–516

    Article  CAS  Google Scholar 

  37. Kim J, Delio R, Dordick JS (2002) Protease-containing silicates as active antifouling materials. Biotechnol Prog 18:551–555

    Article  CAS  Google Scholar 

  38. Aldred N, Phang IY, Conlan SL et al. (2008) The effects of a serine protease, Alcalase (R), on the adhesives of barnacle cyprids (Balanus amphitrite). Biofouling 24:97–107

    Article  CAS  Google Scholar 

  39. Isquith AJ, Abbott EA, Walters PA (1972) Surface-bonded antimicrobial activity of an organosilicon quaternary ammonium chloride. Appl Microbiol 24:859–863

    CAS  Google Scholar 

  40. Tiller JC, Liao C-J, Lewis K et al. (2001) Designing surfaces that kill bacteria on contact. Proc Natl Acad Sci USA 98:5981–5985

    Article  CAS  Google Scholar 

  41. Tiller JC, Lee SB, Lewis K et al. (2002) Polymer surfaces derivatized with poly(vinyl-N-hexylpyridinium) kill airborne and waterborne bacteria. Biotechnol Bioeng 79:465–471

    Article  CAS  Google Scholar 

  42. Lin J, Tiller JC, Lee SB et al. (2002) Insights into bactericidal action of surface-attached poly(vinyl-N-hexylpyridinium) chains. Biotechnol Lett 24:801–805

    Article  CAS  Google Scholar 

  43. Lin J, Qiu SY, Lewis K et al. (2002) Bactericidal properties of flat surfaces and nanoparticles derivatized with alkylated polyethylenimines. Biotechnol Prog 18:1082–1086

    Article  CAS  Google Scholar 

  44. Haldar J, An DQ, de Cienfuegos LA et al. (2006) Polymeric coatings that inactivate both influenza virus and pathogenic bacteria. Proc Natl Acad Sci USA 103:17667–17671

    Article  CAS  Google Scholar 

  45. Milovic NM, Wang J, Lewis K et al. (2005) Immobilized N-alkylated polyethylenimine avidly kills bacteria by rupturing cell membranes with no resistance developed. Biotechnol Bioeng 90:715–722

    Article  CAS  Google Scholar 

  46. Lee SB, Koepsel RR, Morley SW et al. (2004) Permanent, nonleaching antibacterial surfaces. 1. Synthesis by atom transfer radical polymerization. Biomacromolecules 5:877–882

    Article  CAS  Google Scholar 

  47. Kurt P, Wood L, Ohman DE et al. (2007) Highly effective contact antimicrobial surfaces via polymer surface modifiers. Langmuir 23:4719–4723

    Article  CAS  Google Scholar 

  48. Waschinski CJ, Zimmermann J, Salz U et al. (2008) Design of contact-active antimicrobial acrylate-based materials using biocidal macromers. Adv Mater 20:104–108

    Article  CAS  Google Scholar 

  49. Waschinski CJ, Barnert S, Theobald A et al. (2008) Insights in the antibacterial action of poly(methyloxazoline)s with a biocidal end group and varying satellite groups. Biomacromolecules 9:1764–1771

    Article  CAS  Google Scholar 

  50. Waschinski CJ, Herdes V, Schueler F et al. (2005) Influence of satellite groups on telechelic antimicrobial functions of polyoxazolines. Macromol Biosci 5:149–156

    Article  CAS  Google Scholar 

  51. Waschinski CJ, Tiller JC (2005) Poly(oxazoline)s with telechelic antimicrobial functions. Biomacromolecules 6:235–243

    Article  CAS  Google Scholar 

  52. Kang S, Pinault M, Pfefferle LD et al. (2007) Single-walled carbon nanotubes exhibit strong antimicrobial activity. Langmuir 23:8670–8673

    Article  CAS  Google Scholar 

  53. Gottenbos B, van der Mei HC, Klatter F et al. (2002) In vitro and in vivo antimicrobial activity of covalently coupled quaternary ammonium silane coatings on silicone rubber. Biomaterials 23:1417–1423

    Article  CAS  Google Scholar 

  54. Madkour AE, Dabkowski JM, Nusslein K et al. (2009) Fast disinfecting antimicrobial surfaces. Langmuir 25:1060–1067

    Article  CAS  Google Scholar 

  55. Bouloussa O, Rondelez F, Semetey V (2008) A new, simple approach to confer permanent antimicrobial properties to hydroxylated surfaces by surface functionalization. Chem Commun:951–953

    Google Scholar 

  56. Kugler R, Bouloussa O, Rondelez F (2005) Evidence of a charge-density threshold for optimum efficiency of biocidal cationic surfaces. Microbiology 151:1341–1348

    Article  CAS  Google Scholar 

  57. Tiller JC, Liao CJ, Lewis K et al. (2001) Designing surfaces that kill bacteria on contact. Proc Natl Acad Sci USA 98:5981–5985

    Article  CAS  Google Scholar 

  58. Murata H, Koepsel RR, Matyjaszewski K et al. (2007) Permanent, non-leaching antibacterial surfaces - 2: How high density cationic surfaces kill bacterial cells. Biomaterials 28: 4870–4879

    Article  CAS  Google Scholar 

  59. Huang JY, Koepsel RR, Murata H et al. (2008) Nonleaching antibacterial glass surfaces via “Grafting Onto”: the effect of the number of quaternary ammonium groups on biocidal activity. Langmuir 24:6785–6795

    Article  CAS  Google Scholar 

  60. Page K, Wilson M, Parkin IP (2009) Antimicrobial surfaces and their potential in reducing the role of the inanimate environment in the incidence of hospital-acquired infections. J Mater Chem 19:3819–3831

    Article  CAS  Google Scholar 

  61. Bieser A (2008) Surface modifications by hydrogelation and by coating with antimicrobial cellulose derivatives Dissertation, University of Freiburg

    Google Scholar 

  62. Hancock REW, Chapple DS (1999) Peptide antibiotics. Antimicrob Agents Chemother 43:1317–1323

    CAS  Google Scholar 

  63. Bagheri M, Beyermann M, Dathe M (2009) Immobilization reduces the activity of surface-bound cationic antimicrobial peptides with no influence upon the activity spectrum. Antimicrob Agents Chemother 53:1132–1141

    Article  CAS  Google Scholar 

  64. Glinel K, Jonas AM, Jouenne T et al. (2009) Antibacterial and antifouling polymer brushes incorporating antimicrobial peptide. Bioconjug Chem 20:71–77

    Article  CAS  Google Scholar 

  65. Humblot V, Yala JF, Thebault P et al. (2009) The antibacterial activity of Magainin I immobilized onto mixed thiols self-assembled monolayers. Biomaterials 30:3503–3512

    Article  CAS  Google Scholar 

  66. Brogden KA (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 3:238–250

    Article  CAS  Google Scholar 

  67. Salick DA, Kretsinger JK, Pochan DJ et al. (2007) Inherent antibacterial activity of a peptide-based beta-hairpin hydrogel. J Am Chem Soc 129:14793–14799

    Article  CAS  Google Scholar 

  68. Chen R, Cole N, Willcox Mark DP et al. (2009) Synthesis, characterization and in vitro activity of a surface-attached antimicrobial cationic peptide. Biofouling 25:517–524

    Article  CAS  Google Scholar 

  69. Hilpert K, Elliott M, Jenssen H et al. (2009) Screening and characterization of surface-tethered cationic peptides for antimicrobial activity. Chem Biol 16:58–69

    Article  CAS  Google Scholar 

  70. Statz Andrea R, Park Jong P, Chongsiriwatana Nathaniel P et al. (2008) Surface-immobilised antimicrobial peptoids. Biofouling 24:439–448

    Article  CAS  Google Scholar 

  71. Willcox MDP, Hume EBH, Aliwarga Y et al. (2008) A novel cationic-peptide coating for the prevention of microbial colonization on contact lenses. J Appl Microbiol 105:1817–1825

    Article  CAS  Google Scholar 

  72. Xing BG, Yu CW, Chow KH et al. (2002) Hydrophobic interaction and hydrogen bonding cooperatively confer a vancomycin hydrogel: a potential candidate for biomaterials. J Am Chem Soc 124:14846–14847

    Article  CAS  Google Scholar 

  73. Roy S, Das PK (2008) Antibacterial hydrogels of amino acid-based cationic amphiphiles. Biotechnol Bioeng 100:756–764

    Article  CAS  Google Scholar 

  74. Debnath S, Shome A, Das D et al. Hydrogelation through self-assembly of Fmoc-peptide functionalized cationic amphiphiles: potent antibacterial agent. J Phys Chem B 114: 4407–4415

    Google Scholar 

  75. Fleming A (1922) Containing papers of a biological character. Proc R Soc Lond B 93: 306–317

    Article  CAS  Google Scholar 

  76. Schindler CA, Schuhardt VT (1964) Lysostaphin – new bacteriolytic agent for Staphylococcus. Proc Natl Acad Sci USA 51:414–421

    Article  CAS  Google Scholar 

  77. Navarre WW, Ton-That H, Faull KF et al. (1999) Multiple enzymatic activities of the murein hydrolase from staphylococcal phage phi 11 – identification of a d-alanyl-glycine endopeptidase activity. J Biol Chem 274:15847–15856

    Article  CAS  Google Scholar 

  78. Schuch R, Nelson D, Fischetti VA (2002) A bacteriolytic agent that detects and kills Bacillus anthracis. Nature 418:884–889

    Article  CAS  Google Scholar 

  79. Loeffler JM, Nelson D, Fischetti VA (2001) Rapid killing of Streptococcus pneumoniae with a bacteriophage cell wall hydrolase. Science 294:2170–2172

    Article  CAS  Google Scholar 

  80. Edwards JV, Sethumadhavan K, Ullah AHJ (2000) Conjugation and modeled structure/function analysis of lysozyme on glycine esterified cotton cellulose-fibers. Bioconjug Chem 11:469–473

    Article  CAS  Google Scholar 

  81. Luckarift HR, Dickerson MB, Sandhage KH et al. (2006) Rapid, room-temperature synthesis of antibacterial bionanocomposites of lysozyme with amorphous silica or titania. Small 2:640–643

    Article  CAS  Google Scholar 

  82. Wang Q, Fan XR, Hu YJ et al. (2009) Antibacterial functionalization of wool fabric via immobilizing lysozymes. Bioprocess Biosyst Eng 32:633–639

    Article  CAS  Google Scholar 

  83. Watanabe S, Kato H, Shimizu Y et al. (1981) Antibacterial biomaterials by immobilization of hen egg-white lysozyme onto collagen-synthetic polymer composites – histological-findings of immobilized lysozyme in the tissue of a different species. Artif Organs 5:309–309

    Google Scholar 

  84. Liu WK, Brown MRW, Elliott TSJ (1997) Mechanisms of the bactericidal activity of low amperage electric current (DC). J Antimicrob Chemother 39:687–695

    Article  CAS  Google Scholar 

  85. Grahl T, Maerkl H (1996) Killing of microorganisms by pulsed electric fields. Appl Microbiol Biotechnol 45:148–157

    Article  CAS  Google Scholar 

  86. Dutreux N, Notermans S, Wijtzes T et al. (2000) Pulsed electric fields inactivation of attached and free-living Escherichia coli and Listeria innocua under several conditions. Int J Food Microbiol 54:91–98

    Article  CAS  Google Scholar 

  87. Conner CJ, Harper RJ Jr. (1979) Biocidal rating system for outdoor weathered cotton fabric. Textile Chemist Colorist 11:62–65

    CAS  Google Scholar 

  88. Aymonier C, Schlotterbeck U, Antonietti L et al. (2002) Hybrids of silver nanoparticles with amphiphilic hyperbranched macromolecules exhibiting antimicrobial properties. Chem Commun:3018–3019

    Google Scholar 

  89. Brunt KD (1995) A silver lining for paints and coatings - a revolutionary preservative system. Spec Publ R Soc Chem 165:243–251

    CAS  Google Scholar 

  90. Ho CH, Tobis J, Sprich C et al. (2004) Nanoseparated polymeric networks with multiple antimicrobial properties. Adv Mater 16:957–961

    Article  CAS  Google Scholar 

  91. de Nys R, Givskov M, Kumar N et al. (2006) Furanones. Prog Mol Subcell Biol 42:55–86

    Google Scholar 

  92. Kristinsson KG, Jansen B, Treitz U et al. (1991) Antimicrobial activity of polymers coated with iodine-complexed polyvinylpyrrolidone. J Biomater Appl 5:173–184

    Article  CAS  Google Scholar 

  93. Kugel AJ, Jarabek LE, Daniels JW et al. (2009) Combinatorial materials research applied to the development of new surface coatings XII: novel, environmentally friendly antimicrobial coatings derived from biocide-functional acrylic polyols and isocyanates. J Coat Technol Res 6:107–121

    Article  CAS  Google Scholar 

  94. Nablo BJ, Schoenfisch MH (2003) Antibacterial properties of nitric oxide-releasing sol-gels. J Biomed Mater Res A 67A:1276–1283

    Article  CAS  Google Scholar 

  95. Li Y, Worley SD (2001) Biocidal copolymers of N-haloacryloxymethylhydantoin. J Bioact Compat Polym 16:493–506

    Article  CAS  Google Scholar 

  96. Matl FD, Zlotnyk J, Obermeier A et al. (2009) New anti-infective coatings of surgical sutures based on a combination of antiseptics and fatty acids. J Biomater Sci Polym Ed 20:1439–1449

    Article  CAS  Google Scholar 

  97. Hetrick EM, Schoenfisch MH (2006) Reducing implant-related infections: active release strategies. Chem Soc Rev 35:780–789

    Article  CAS  Google Scholar 

  98. Norowski PA Jr, Bumgardner Joel D (2009) Biomaterial and antibiotic strategies for peri-implantitis: a review. J Biomed Mater Res B Appl Biomater 88:530–543

    Google Scholar 

  99. Eby DM, Luckarift HR, Johnson GR (2009) Hybrid antimicrobial enzyme and silver nanoparticle coatings for medical instruments. ACS Appl Mater Interfaces 1:1553–1560

    Article  CAS  Google Scholar 

  100. Rudra JS, Dave K, Haynie DT (2006) Antimicrobial polypeptide multilayer nanocoatings. J Biomater Sci Polym Ed 17:1301–1315

    Article  CAS  Google Scholar 

  101. Chuang HF, Smith RC, Hammond PT (2008) Polyelectrolyte multilayers for tunable release of antibiotics. Biomacromolecules 9:1660–1668

    Article  CAS  Google Scholar 

  102. Dai JH, Bruening ML (2002) Catalytic nanoparticles formed by reduction of metal ions in multilayered polyelectrolyte films. Nano Lett 2:497–501

    Article  CAS  Google Scholar 

  103. Lichter JA, Van Vliet KJ, Rubner MF (2009) Design of antibacterial surfaces and interfaces: polyelectrolyte multilayers as a multifunctional platform. Macromolecules 42:8573–8586

    Article  CAS  Google Scholar 

  104. Gollwitzer H, Ibrahim K, Meyer H et al. (2003) Antibacterial poly(d,l-lactic acid) coating of medical implants using a biodegradable drug delivery technology. J Antimicrob Chemother 51:585–591

    Article  CAS  Google Scholar 

  105. Tamilvanan S, Venkateshan N, Ludwig A (2008) The potential of lipid- and polymer-based drug delivery carriers for eradicating biofilm consortia on device-related nosocomial infections. J Controll Release 128:2–22

    Article  CAS  Google Scholar 

  106. Shukla A, Fleming Kathleen E, Chuang Helen F et al. (2010) Controlling the release of peptide antimicrobial agents from surfaces. Biomaterials 31:2348–2357

    Article  CAS  Google Scholar 

  107. Woo GLY, Yang ML, Yin HQ et al. (2002) Biological characterization of a novel biodegradable antimicrobial polymer synthesized with fluoroquinolones. J Biomed Mater Res 59:35–45

    Article  CAS  Google Scholar 

  108. Tanihara M, Suzuki Y, Nishimura Y et al. (1998) Thrombin-sensitive peptide linkers for biological signal-responsive drug release systems. Peptides 19:421–425

    Article  CAS  Google Scholar 

  109. Suzuki Y, Tanihara M, Nishimura Y et al. (1998) A new drug delivery system with controlled release of antibiotic only in the presence of infection. J Biomed Mater Res 42:112–116

    Article  CAS  Google Scholar 

  110. Tanihara M, Suzuki Y, Nishimura Y et al. (1999) A novel microbial infection-responsive drug release system. J Pharm Sci 88:510–514

    Article  CAS  Google Scholar 

  111. Yancheva E, Paneva D, Maximova V et al. (2007) Polyelectrolyte complexes between (cross-linked) N-carboxyethylchitosan and (quaternized) poly[2-(dimethylamino)ethyl methacrylate]: preparation, characterization, and antibacterial properties. Biomacromolecules 8:976–984

    Article  CAS  Google Scholar 

  112. Lichter JA, Rubner MF (2009) Polyelectrolyte multilayers with intrinsic antimicrobial functionality: the importance of mobile polycations. Langmuir 25:7686–7694

    Article  CAS  Google Scholar 

  113. Fujishima A, Zhang XT, Tryk DA (2008) TiO2 photocatalysis and related surface phenomena. Surf Sci Rep 63:515–582

    Article  CAS  Google Scholar 

  114. Zeiger HJ, Henrich VE, Dresselhaus G (1977) Interaction of O2 and H2O with surface defects on TIO2 and SRTIO3. Bull Am Phys Soc 22:419–419

    Google Scholar 

  115. Watanabe T, Nakajima A, Wang R et al. (1999) Photocatalytic activity and photoinduced hydrophilicity of titanium dioxide coated glass. Thin Solid Films 351:260–263

    Article  CAS  Google Scholar 

  116. Jaeger CD, Bard AJ (1979) Spin trapping and electron-spin resonance detection of radical intermediates in the photo-decomposition of water at TiO2 particulate systems. J Phys Chem 83:3146–3152

    Article  CAS  Google Scholar 

  117. Nadtochenko V, Denisov N, Sarkisov O et al. (2006) Laser kinetic spectroscopy of the interfacial charge transfer between membrane cell walls of E. coli and TiO2. J Photochem Photobiol A Chem 181:401–407

    Article  CAS  Google Scholar 

  118. Dung DH, Serpone N, Gratzel M (1984) Integrated systems for water cleavage by visible-light – sensitization of TiO2 particles by surface derivatization with ruthenium complexes. Helv Chim Acta 67:1012–1018

    Article  Google Scholar 

  119. Houlding VH, Gratzel M (1983) Photochemical H2 generation by visible-light – sensitization of TiO2 particles by surface complexation with 8-hydroxyquinoline. J Am Chem Soc 105:5695–5696

    Article  CAS  Google Scholar 

  120. Sung-Suh HM, Choi JR, Hah HJ et al. (2004) Comparison of Ag deposition effects on the photocatalytic activity of nanoparticulate TiO2 under visible and UV light irradiation. J Photochem Photobiol A Chem 163:37–44

    Article  CAS  Google Scholar 

  121. Hu C, Hu XX, Guo J et al. (2006) Efficient destruction of pathogenic bacteria with NiO∕SrBi2O4 under visible light irradiation. Environ Sci Technol 40:5508–5513

    Article  CAS  Google Scholar 

  122. Raab O (1900) Effect of fluorescent substances on Infusoria. Z Biol 39:524

    CAS  Google Scholar 

  123. Foote CS (1991) Definition of type-I and type-II photosensitized oxidation. Photochem Photobiol 54:659–659

    Article  CAS  Google Scholar 

  124. Halliwell B, Gutteridge JMC (1984) Lipid-peroxidation, oxygen radicals, cell-damage, and antioxidant therapy. Lancet 1:1396–1397

    Article  CAS  Google Scholar 

  125. Noimark S, Dunnill CW, Wilson M et al. (2009) The role of surfaces in catheter-associated infections. Chem Soc Rev 38:3435–3448

    Article  CAS  Google Scholar 

  126. Wilson M (2003) Light-activated antimicrobial coating for the continuous disinfection of surfaces. Infect Control Hosp Epidemiol 24:782–784

    Article  Google Scholar 

  127. Bozja J, Sherrill J, Michielsen S et al. (2003) Porphyrin-based, light-activated antimicrobial materials. J Polym Sci A Polym Chem 41:2297–2303

    Article  CAS  Google Scholar 

  128. Perni S, Piccirillo C, Pratten J et al. (2009) The antimicrobial properties of light-activated polymers containing methylene blue and gold nanoparticles. Biomaterials 30:89–93

    Article  CAS  Google Scholar 

  129. Garcia-Garibay M, Luna-Salazar A, Casas LT (1995) Antimicrobial effect of the lactoperoxidase system in milk activated by immobilized enzymes. Food Biotechnol 9:157–166

    Article  CAS  Google Scholar 

  130. Vartiainen J, Ratto M, Paulussen S (2005) Antimicrobial activity of glucose oxidase-immobilized plasma-activated polypropylene films. Packag Technol Sci 18:243–251

    Article  CAS  Google Scholar 

  131. Kristensen JB, Olsen SM, Laursen BS et al. (2010) Enzymatic generation of hydrogen peroxide shows promising antifouling effect. Biofouling 26:141–153

    Article  CAS  Google Scholar 

  132. Amitai G, Andersen J, Wargo S et al. (2009) Polyurethane-based leukocyte-inspired biocidal materials. Biomaterials 30:6522–6529

    Article  CAS  Google Scholar 

  133. Kuo PL, Chuang TF, Wang HL (1999) Surface-fragmenting, self-polishing, tin-free antifouling coatings. J Coat Technol 71:77–83

    Article  CAS  Google Scholar 

  134. Ibbitson D, Johnson AF, Morley NJ et al. (1986) Structure property relationships in TIN-based antifouling paints. ACS Symp Ser 322:326–340

    Google Scholar 

  135. Qian PY, Xu Y, Fusetani N (2010) Natural products as antifouling compounds: recent progress and future perspectives. Biofouling 26:223–234

    Article  CAS  Google Scholar 

  136. Cheng G, Xue H, Zhang Z et al. (2008) A switchable biocompatible polymer surface with self-sterilizing and nonfouling capabilities. Angew Chem Int Ed 47:8831–8834

    Article  CAS  Google Scholar 

  137. Liang J, Chen Y, Barnes K et al. (2006) N-halamine/quat siloxane copolymers for use in biocidal coatings. Biomaterials 27:2495–2501

    Article  CAS  Google Scholar 

  138. Li Z, Lee D, Sheng XX et al. (2006) Two-level antibacterial coating with both release-killing and contact-killing capabilities. Langmuir 22:9820–9823

    Article  CAS  Google Scholar 

  139. Sambhy V, MacBride MM, Peterson BR et al. (2006) Silver bromide nanoparticle/polymer composites: dual action tunable antimicrobial materials. J Am Chem Soc 128:9798–9808

    Article  CAS  Google Scholar 

  140. Guyomard A, De E, Jouenne T et al. (2008) Incorporation of a hydrophobic antibacterial peptide into amphiphilic polyelectrolyte multilayers: a bioinspired approach to prepare biocidal thin coatings. Adv Funct Mater 18:758–765

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joerg C. Tiller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tiller, J.C. (2010). Antimicrobial Surfaces. In: Börner, H., Lutz, JF. (eds) Bioactive Surfaces. Advances in Polymer Science, vol 240. Springer, Berlin, Heidelberg. https://doi.org/10.1007/12_2010_101

Download citation

Publish with us

Policies and ethics