Skip to main content

Surfactant-Mediated Fabrication of Optical Nanoprobes

  • Chapter
  • First Online:
Interfacial Processes and Molecular Aggregation of Surfactants

Part of the book series: Advances in Polymer Science ((POLYMER,volume 218))

Abstract

Modern bio-imaging techniques often employ contrast agents to improve the image quality and also toprovide specific information about anatomical structure and/or the function of biological systems. Quantumdots, fluorescent dye-doped silica and gold nanoparticles are important examples of new nanoparticulate-basedimaging agents that have overcome many of the limitations of conventional contrast media such as organicdyes. These agents have the ability to provide enhanced photostability and sensitivity in combination withsufficient in vitro and in vivo stability. Surfactant-mediated methods are one of the most versatile strategiesfor synthesizing nanosized contrast agents. Microemulsion-mediated synthesis, in particular, offers a widelyapplicable approach to produce a variety of engineered optical nanoprobes presenting good control overnanoparticle size, design and robust surface derivatization. Herein the authors provide a review ofsurfactant chemistry and strategies, with a particular focus on microemulsions, for generating luminescentnanoprobes, such as quantum dots, fluorescent silica and gold nanoparticles for bioimaging applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mahmood U, Weissleder R (2002) Some tools for molecular imaging. Acad Radiol 9:629–631

    Google Scholar 

  2. Murray CB, Kagan CR, Bawendi MG (2000) Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Ann Rev Mater Sci 30:545–610

    CAS  Google Scholar 

  3. Feldheim DL, Foss CA (2002) Metal nanoparticles: synthesis, characterization, and applications. Marcel Dekker, New York

    Google Scholar 

  4. Cushing BL, Kolesnichenko VL, O'Connor CJ (2004) Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem Rev 104:3893–3946

    CAS  Google Scholar 

  5. Yin Y, Alivisatos AP (2005) Colloidal nanocrystal synthesis and the organic–inorganic interface. Nature 437:664–670

    CAS  Google Scholar 

  6. Chan WC, Maxwell DJ, Gao X, Bailey RE, Han M, Nie S (2002) Luminescent quantum dots for multiplexed biological detection and imaging. Curr Opin Biotechnol 13:40–46

    CAS  Google Scholar 

  7. Bruchez M Jr, Moronne M, Gin P, Weiss S, Alivisatos AP (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281:2013–2016

    CAS  Google Scholar 

  8. Licha K, Riefke B, Ntziachristos V, Becker A, Chance B, Semmler W (2000) Hydrophilic cyanine dyes as contrast agents for near-infrared tumor imaging: synthesis, photophysical properties and spectroscopic in vivo characterization. Photochem Photobiol 72:392–398

    CAS  Google Scholar 

  9. Pham W, Lai WF, Weissleder R, Tung C H (2003) High efficiency synthesis of a bioconjugatable near-infrared fluorochrome. Bioconjug Chem 14:1048–1051

    CAS  Google Scholar 

  10. Huber MM, Staubli AB, Kustedjo K, Gray MHB, Shih J, Fraser SE, Jacobs RE, Meade TJ (1998) Fluorescently detectable magnetic resonance imaging agents. Bioconjug Chem 9:242–249

    CAS  Google Scholar 

  11. Santra S, Bagwe RP, Dutta D, Stanley JT, Walter GA, Tan W, Moudgil BM, Mericle RA (2005) Synthesis and characterization of fluorescent, radio-opaque, and paramagnetic silica nanoparticles for multimodal bioimaging applications. Adv Mater 17:2165–2169

    CAS  Google Scholar 

  12. Gao XH, Cui YY, Levenson RM, Chung LWK, Nie SM (2004) In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 22:969–976

    CAS  Google Scholar 

  13. Pellegrino T, Manna L, Kudera S, Liedl T, Koktysh D, Rogach AL, Keller S, Radler J, Natile G, Parak WJ (2004) Hydrophobic nanocrystals coated with an amphiphilic polymer shell: A general route to water soluble nanocrystals. Nano Lett 4:703–707

    CAS  Google Scholar 

  14. Abe M, Scamehorn JF (2005) Mixed surfactant systems. Marcel Dekker, New York

    Google Scholar 

  15. Wu SX, Zeng HX, Schelly ZA (2005) Growth of uncapped, subnanometer size gold clusters prepared via electroporation of vesicles. J Phys Chem B 109:18715–18718

    CAS  Google Scholar 

  16. Fendler JH (1982) Membrane mimetic chemistry: characterizations and applications of micelles, microemulsions, monolayers, bilayers, vesicles, host–guest systems, and polyions. Wiley, New York

    Google Scholar 

  17. Fendler JH (1996) Nanoparticles at air/water interfaces. Curr Opin Colloid Interface Sci 1:202–207

    CAS  Google Scholar 

  18. Khomutov GB, Obydenov AY, Yakovenko SA, Soldatov ES, Trifonov AS, Khanin VV, Gubin SP (1999) Synthesis of nanoparticles in Langmuir monolayer. Mater Sci Eng C 8-9:309–318

    Google Scholar 

  19. Ottova A, Tvarozek V, Racek J, Sabo J, Ziegler W, Hianik T, Tien HT (1997) Self-assembled BLMs: biomembrane models and biosensor applications. Supramol Sci 4:101–112

    CAS  Google Scholar 

  20. Pileni MP (1993) Reverse Micelles as Microreactors. J Phys Chem 97:6961–6973

    CAS  Google Scholar 

  21. Pillai V, Kumar P, Hou M J, Ayyub P, Shah DO (1995) Preparation of Nanoparticles of Silver-Halides, Superconductors and Magnetic-Materials Using Water-in-Oil Microemulsions as Nano-Reactors. Adv Colloid Interface Sci 55:241–269

    CAS  Google Scholar 

  22. Shah DO (1998) Micelles, microemulsions, and monolayers: science and technology. Marcel Dekker, New York

    Google Scholar 

  23. Holmberg K (2003) Surfactants and polymers in aqueous solution. John Wiley & Sons, Chichester; Hoboken, NJ

    Google Scholar 

  24. Pileni MP (1989) Structure and reactivity in reverse micelles. Elsevier, Amsterdam, New York

    Google Scholar 

  25. Mittal KL, Kumar P (1999) Handbook of microemulsion science and technology. Marcel Dekker, New York

    Google Scholar 

  26. Capek I (2004) Preparation of metal nanoparticles in water-in-oil (w/o) microemulsions. Adv Colloid Interface Sci 110:49–74

    CAS  Google Scholar 

  27. Lopez-Quintela MA (2003) Synthesis of nanomaterials in microemulsions: formation mechanisms and growth control. Curr Opin Colloid Interface Sci 8:137–144

    CAS  Google Scholar 

  28. Lopez-Quintela MA, Tojo C, Blanco MC, Rio LG, Leis JR (2004) Microemulsion dynamics and reactions in microemulsions. Curr Opin Colloid Interface Sci 9:264–278

    CAS  Google Scholar 

  29. Maitra A (1984) Determination of Size Parameters of Water Aerosol Ot Oil Reverse Micelles from Their Nuclear Magnetic-Resonance Data. J Phys Chem 88:5122–5125

    CAS  Google Scholar 

  30. Evans D F, Wennerstrom H K (1999) The colloidal domain: where physics, chemistry, biology, and technology meet. Wiley-VCH, New York

    Google Scholar 

  31. Eicke HF, Shepherd JCW, Steinemann A (1976) Exchange of Solubilized Water and Aqueous-Electrolyte Solutions between Micelles in Apolar Media. J Colloid Interface Sci 56:168–176

    CAS  Google Scholar 

  32. Fletcher PDI, Howe AM, Robinson BH (1987) The Kinetics of Solubilisate Exchange between Water Droplets of a Water-in-Oil Microemulsion. J Chem Soc Faraday Trans I 83:985–1006

    CAS  Google Scholar 

  33. Robinson BH, Toprakcioglu C, Dore JC, Chieux P (1984) Small-Angle Neutron-Scattering Study of Microemulsions Stabilized by Aerosol-Ot.1. Solvent and Concentration Variation. J Chem Soc Faraday Trans I 80:13–27

    CAS  Google Scholar 

  34. Huang JS (1985) Surfactant Interactions in Oil Continuous Microemulsions. J Chem Phys 82:480–484

    CAS  Google Scholar 

  35. Huang J S, Safran S A, Kim M W, Grest G S, Kotlarchyk M, Quirke N (1984) Attractive Interactions in Micelles and Microemulsions. Phys Rev Lett 53:592–595

    CAS  Google Scholar 

  36. Jain TK, Cassin G, Badiali JP, Pileni MP (1996) Relation between exchange process and structure of AOT reverse micellar system. Langmuir 12:2408–2411

    CAS  Google Scholar 

  37. Rosi NL, Mirkin CA (2005) Nanostructures in biodiagnostics. Chem Rev 105:1547–1562

    CAS  Google Scholar 

  38. Smith PW (2002) Fluorescence emission-based detection and diagnosis of malignancy. J Cell Biochem Suppl 39:54–59

    Google Scholar 

  39. Qhobosheane M, Santra S, Zhang P, Tan WH (2001) Biochemically functionalized silica nanoparticles. Analyst 126:1274–1278

    CAS  Google Scholar 

  40. Santra S, Zhang P, Wang KM, Tapec R, Tan WH (2001) Conjugation of biomolecules with luminophore-doped silica nanoparticles for photostable biomarkers. Anal Chem 73:4988–4993

    CAS  Google Scholar 

  41. Santra S, Wang KM, Tapec R, Tan WH (2001) Development of novel dye-doped silica nanoparticles for biomarker application. J Biomed Optics 6:160–166

    CAS  Google Scholar 

  42. Santra S, Dutta D, Moudgil BM (2005) Functional dye-doped silica nanoparticles for bioimaging, diagnostics and therapeutics. Food Bioprod Process 83:136–140

    CAS  Google Scholar 

  43. He XX, Duan JH, Wang KM, Tan WH, Lin X, He CM (2004) A novel fluorescent label based on organic dye-doped silica nanoparticles for HepG liver cancer cell recognition. J Nanosci Nanotechnol 4:585–589

    CAS  Google Scholar 

  44. Lian W, Litherland SA, Badrane H, Tan WH, Wu DH, Baker HV, Gulig PA, Lim DV, Jin SG (2004) Ultrasensitive detection of biomolecules with fluorescent dye-doped nanoparticles. Anal Biochem 334:135–144

    CAS  Google Scholar 

  45. Santra S, Liesenfeld B, Bertolino C, Dutta D, Cao Z, Tan WH, Moudgil BM, Mericle RA (2006) Fluorescence lifetime measurements to determine the core-shell nanostructure of FITC-doped silica nanoparticles: An optical approach to evaluate nanoparticle photostability. J Luminesc 117:75–82

    CAS  Google Scholar 

  46. Zhao XJ, Bagwe RP, Tan WH (2004) Development of organic-dye-doped silica nanoparticles in a reverse microemulsion. Adv Mater 16:173

    CAS  Google Scholar 

  47. Santra S, Yang H, Dutta D, Stanley JT, Holloway PH, Tan WH, Moudgil BM, Mericle RA (2004) TAT conjugated, FITC doped silica nanoparticles for bioimaging applications. Chem Commun, pp 2810–2811

    Google Scholar 

  48. Lettinga MP, van Zandvoort MAMJ, van Kats CM, Philipse AP (2000) Phosphorescent colloidal silica spheres as tracers for rotational diffusion studies. Langmuir 16:6156–6165

    CAS  Google Scholar 

  49. Tapec R, Zhao XJJ, Tan WH (2002) Development of organic dye-doped silica nanoparticles for bioanalysis and biosensors. J Nanosci Nanotechnol 2:405–409

    CAS  Google Scholar 

  50. Senarath-Yapa MD, Saavedra SS, Aspinwall CA, Roberts DL (2004) Poly(lipid)-coated, bye doped silica nanoparticles for biological sensing applications. Abstr Pap Am Chem Soc 227:U849–U849

    Google Scholar 

  51. Qian KJ, Zhang L, Yang ML, He PG, Fang YZ (2004) Preparation of luminol-doped nanoparticle and its application in DNA hybridization analysis. Chinese J Chem 22:702–707

    CAS  Google Scholar 

  52. Schmidt H (1988) Chemistry of Material Preparation by the Sol-Gel Process. J Non-Crystalline Solids 100:51–64

    CAS  Google Scholar 

  53. Ulrich DR (1988) Prospects of Sol–Gel Processes. J Non-Crystalline Solids 100:174–193

    CAS  Google Scholar 

  54. Chang CL, Fogler HS (1996) Kinetics of silica particle formation in nonionic w/o microemulsions from TEOS. AIChE J 42:3153–3163

    CAS  Google Scholar 

  55. Osseoasare K, Arriagada FJ (1990) Preparation of SiO2 Nanoparticles in a Nonionic Reverse Micellar System. Colloids Surf 50:321–339

    CAS  Google Scholar 

  56. Arriagada FJ, Osseoasare K (1992) Phase and Dispersion Stability Effects in the Synthesis of Silica Nanoparticles in a Nonionic Reverse Microemulsion. Colloids Surf 69:105–115

    CAS  Google Scholar 

  57. Chang CL, Fogler HS (1997) Controlled formation of silica particles from tetraethyl orthosilicate in nonionic water-in-oil microemulsions. Langmuir 13:3295–3307

    CAS  Google Scholar 

  58. Bagwe RP, Yang CY, Hilliard LR, Tan WH (2004) Optimization of dye-doped silica nanoparticles prepared using a reverse microemulsion method. Langmuir 20:8336–8342

    CAS  Google Scholar 

  59. Arriagada FJ, Osseoasare K (1994) Silica Nanoparticles Produced in Aerosol Ot Reverse Microemulsions – Effect of Benzyl Alcohol on Particle-Size and Polydispersity. J Dispers Sci Technol 15:59–71

    CAS  Google Scholar 

  60. Arriagada FJ, Osseo-Asare K (1999) Synthesis of nanosize silica in a nonionic water-in-oil microemulsion: Effects of the water/surfactant molar ratio and ammonia concentration. J Colloid Interface Sci 211:210–220

    CAS  Google Scholar 

  61. Yang HH, Qu HY, Lin P, Li HS, Ding MT, Xu JG (2003) Nanometer fluorescent hybrid silica particle as ultrasensitive and photostable biological labels. Analyst 128:462–466

    CAS  Google Scholar 

  62. Jain TK, Roy I, De TK, Maitra A (1998) Nanometer silica particles encapsulating active compounds: A novel ceramic drug carrier. J Am Chem Soc 120:11092–11095

    CAS  Google Scholar 

  63. Yang W, Zhang CG, Qu HY, Yang HH, Xu JZ (2004) Novel fluorescent silica nanoparticle probe for ultrasensitive immunoassays. Anal Chim Acta 503:163–169

    CAS  Google Scholar 

  64. Wang L, Yang C, Tan WH (2005) Dual-luminophore-doped silica nanoparticles for multiplexed signaling. Nano Lett 5:37–43

    CAS  Google Scholar 

  65. Ye ZQ, Tan MQ, Wang GL, Yuan JL (2004) Novel fluorescent europium chelate-doped silica nanoparticles: preparation, characterization and time-resolved fluorometric application. J Mater Chem 14:851–856

    CAS  Google Scholar 

  66. Fontell K, Khan A, Lindstrom B, Maciejewska D, Puangngern S (1991) Phase-Equilibria and Structures in Ternary-Systems of a Cationic Surfactant (C16tabr or (C16ta)2so4), Alcohol, and Water. Colloid Polym Sci 269:727–742

    CAS  Google Scholar 

  67. Israelachvili JN, Mitchell DJ, Ninham BW (1977) Theory of Self-Assembly of Lipid Bilayers and Vesicles. Biochim Biophys Acta 470:185–201

    CAS  Google Scholar 

  68. De TK, Maitra A (1995) Solution Behavior of Aerosol Ot in Nonpolar-Solvents. Adv Colloid Interface Sci 59:95–193

    CAS  Google Scholar 

  69. Nazario LMM, Hatton TA, Crespo JPSG (1996) Nonionic cosurfactants in AOT reversed micelles: Effect on percolation, size, and solubilization site. Langmuir 12:6326–6335

    CAS  Google Scholar 

  70. Lang J, Jada A, Malliaris A (1988) Structure and Dynamics of Water-in-Oil Droplets Stabilized by Sodium Bis(2-Ethylhexyl) Sulfosuccinate. J Phys Chem 92:1946–1953

    CAS  Google Scholar 

  71. Arriagada FJ, Osseoasare K (1995) Synthesis of Nanosize Silica in Aerosol Ot Reverse Microemulsions. J Colloid Interface Sci 170:8–17

    CAS  Google Scholar 

  72. Bergna HE (1990) American Chemical Society. Division of Colloid and Surface Chemistry. and American Chemical Society. Meeting The Colloid chemistry of silica: developed from a symposium sponsored by the Division of Colloid and Surface Chemistry at the 200th National Meeting of the American Chemical Society, Washington, DC, August 26–31, 1990, The Society, Washington, DC, 1994

    Google Scholar 

  73. Ma ZN, Friberg SE, Neogi P (1988) Observation of Temporary Liquid-Crystals in Water-in-Oil Microemulsion Systems. Colloids Surf 33:249–258

    CAS  Google Scholar 

  74. Friberg SE, Yang CC, Sjoblom J (1992) Amphiphilic Association Structures and the Microemulsion Gel Method for Ceramics – Influence on Original Phase Regions by Hydrolysis and Condensation of Silicon Tetraethoxide. Langmuir 8:372–376

    CAS  Google Scholar 

  75. Friberg SE, Ahmed AU, Yang CC, Ahuja S, Bodesha SS (1992) Gelation of a Microemulsion by Silica Formed Insitu. J Mater Chem 2:257–258

    CAS  Google Scholar 

  76. Marchand KE, Tarret M, Lechaire JP, Normand L, Kasztelan S, Cseri T (2003) Investigation of AOT-based microemulsions for the controlled synthesis of MoSx nanoparticles: an electron microscopy study. Colloids Surf A 214:239–248

    CAS  Google Scholar 

  77. Bagwe RP, Khilar KC (2000) Effects of intermicellar exchange rate on the formation of silver nanoparticles in reverse microemulsions of AOT. Langmuir 16:905–910

    CAS  Google Scholar 

  78. Ekwall P, Mandell L, Fontell K (1969) Cetyltrimethylammonium Bromide-Hexanol-Water System. J Colloid Interface Sci 29:639

    CAS  Google Scholar 

  79. Israelachvili JN, Mitchell DJ, Ninham BW (1976) Theory of Self-Assembly of Hydrocarbon Amphiphiles into Micelles and Bilayers. J Chem Soc Faraday Trans II 72:1525–1568

    Google Scholar 

  80. Liu JC, Ikushima Y, Shervani Z (2004) Investigation on the solubilization of organic dyes and micro-polarity in AOT water-in-CO2 microemulsions with fluorinated co-surfactant by using UV-Vis spectroscopy. J Supercrit Fluids 32:97–103

    CAS  Google Scholar 

  81. Shen D, Zhang R, Han BX, Dong Y, Wu WZ, Zhang JL, Li JC, Jiang T, Liu ZM (2004) Enhancement of the solubilization capacity of water in Triton X-100/cyclohexane/water system by compressed gases. Chem Eur J 10:5123–5128

    CAS  Google Scholar 

  82. Song LY, Ge XW, Zhang ZC (2005) Interfacial fabrication of silica hollow particles in a reverse emulsion system. Chem Lett 34:1314–1315

    CAS  Google Scholar 

  83. Lin YS, Hung Y, Su JK, Lee R, Chang C, Lin ML, Mou YC (2004) Gadolinium(III)-incorporated nanosized mesoporous silica as potential magnetic resonance imaging contrast agents. J Phys Chem B 108:15608–15611

    CAS  Google Scholar 

  84. Yin W, Zhang MS (2003) Characterization of nanosized Tb-MCM-41 synthesized by the sol–gel-assisted self-assembly method. J Alloys Compounds 360:231–235

    CAS  Google Scholar 

  85. Matos JR, Mercuri LP, Jaroniec M, Kruk M, Sakamoto Y, Terasaki O (2001) Synthesis and characterization of europium-doped ordered mesoporous silicas. J Mater Chem 11:2580–2586

    CAS  Google Scholar 

  86. Suzuki K, Ikari K, Imai H (2004) Synthesis of silica nanoparticles having a well-ordered mesostructure using a double surfactant system. J Am Chem Soc 126:462–463

    CAS  Google Scholar 

  87. Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS (1992) Ordered Mesoporous Molecular-Sieves Synthesized by a Liquid–Crystal Template Mechanism. Nature 359:710–712

    CAS  Google Scholar 

  88. Nooney RI, Thirunavukkarasu D, Chen YM, Josephs R, Ostafin AE (2002) Synthesis of nanoscale mesoporous silica spheres with controlled particle size. Chem Mater 14:4721–4728

    CAS  Google Scholar 

  89. Haskouri JE, Cabrera S, Caldes M, Guillem C, Latorre J, Beltran A, Beltran D, Marcos MD, Amoros P (2002) Surfactant-assisted synthesis of the SBA-8 mesoporous silica by using nonrigid commercial alkyltrimethyl ammonium surfactants. Chem Mater 14:2637–2643

    Google Scholar 

  90. Czuryszkiewicz T, Rosenholm J, Kleitz F, Linden M (2002) Synthesis and characterization of mesoscopically ordered surfactant/cosurfactant templated metal oxides. Impact of Zeolites and Other Porous Materials on the New Technologies at the Beginning of the New Millennium, Book Series: Studies in Surface Science and Catalysis, Pts A and B 142:1117–1124

    Google Scholar 

  91. Bohren CF, Huffman DR (1983) Absorption and scattering of light by small particles. Wiley, New York

    Google Scholar 

  92. Hayat MA (1989) Colloidal gold: principles, methods, and applications. Academic Press, San Diego

    Google Scholar 

  93. Khlebtsov NG, Trachuk LA, Mel'nikov AG (2005) The effect of the size, shape, and structure of metal nanoparticles on the dependence of their optical properties on the refractive index of a disperse medium. Optics Spectrosc 98:77–83

    CAS  Google Scholar 

  94. Murphy CJ, Jana NR (2002) Controlling the aspect ratio of inorganic nanorods and nanowires. Adv Mater 14:80–82

    CAS  Google Scholar 

  95. Ghosh SK, Nath S, Kundu S, Esumi K, Pal T (2004) Solvent and ligand effects on the localized surface plasmon resonance (LSPR) of gold colloids. J Phys Chem B 108:13963–13971

    CAS  Google Scholar 

  96. Oldenburg SJ, Averitt RD, Westcott SL, Halas NJ (1998) Nanoengineering of optical resonances. Chem Phys Lett 288:243–247

    CAS  Google Scholar 

  97. Novak JP, Nickerson C, Franzen S, Feldheim DL (2001) Purification of molecularly bridged metal nanoparticle arrays by centrifugation and size exclusion chromatography. Anal Chem 73:5758–5761

    CAS  Google Scholar 

  98. Marinakos SM, Novak JP, Brousseau LC, House AB, Edeki EM, Feldhaus JC, Feldheim DL (1999) Gold particles as templates for the synthesis of hollow polymer capsules. Control of capsule dimensions and guest encapsulation. J Am Chem Soc 121:8518–8522

    CAS  Google Scholar 

  99. Underwood S, Mulvaney P (1994) Effect of the Solution Refractive-Index on the Color of Gold Colloids. Langmuir 10:3427–3430

    CAS  Google Scholar 

  100. Mrksich M (2000) A surface chemistry approach to studying cell adhesion. Chem Soc Rev 29:267–273

    CAS  Google Scholar 

  101. Bright RM, Walter DG, Musick MD, Jackson MA, Allison KJ, Natan MJ (1996) Chemical and electrochemical Ag deposition onto preformed Au colloid monolayers: Approaches to uniformly-sized surface features with Ag-like optical properties. Langmuir 12:810–817

    CAS  Google Scholar 

  102. Hermanson GT (1996) Bioconjugate techniques. Academic Press, San Diego

    Google Scholar 

  103. O'Neal DP, Hirsch LR, Halas NJ, Payne JD, West J (2004) Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Lett 209:171–176

    Google Scholar 

  104. Loo C, Lowery A, Halas N, West J, Drezek R (2005) Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett 5:709–711

    CAS  Google Scholar 

  105. Hirsch LR, Jackson JB, Lee A, Halas NJ, West J (2003) A whole blood immunoassay using gold nanoshells. Anal Chem 75:2377–2381

    CAS  Google Scholar 

  106. Elghanian R, Storhoff JJ, Mucic RC, Letsinger RL, Mirkin CA (1997) Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 277:1078–1081

    CAS  Google Scholar 

  107. Storhoff JJ, Lazarides AA, Mucic RC, Mirkin CA, Letsinger RL, Schatz GC (2000) What controls the optical properties of DNA-linked gold nanoparticle assemblies? J Am Chem Soc 122:4640–4650

    CAS  Google Scholar 

  108. Taton TA, Mirkin CA, Letsinger RL (2000) Scanometric DNA array detection with nanoparticle probes. Science 289:1757–1760

    CAS  Google Scholar 

  109. Beesley JE (1989) Colloidal gold: a new perspective for cytochemical marking. Oxford University Press, Oxford; Royal Microscopical Society, New York Oxford

    Google Scholar 

  110. Schmid G, Chi LF (1998) Metal clusters and colloids. Adv Mater 10:515–526

    CAS  Google Scholar 

  111. Schmid G, Corain B (2003) Nanoparticulated gold: Syntheses, structures, electronics, and reactivities. Eur J Inorg Chem 3081-3098

    Google Scholar 

  112. Daniel MC, Astruc D (2004) Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346

    CAS  Google Scholar 

  113. Boutonnet M, Kizling J, Stenius P (1982) The Preparation of Monodisperse Colloidal Metal Particles from Micro-Emulsions. Colloids Surf 5:209–225

    CAS  Google Scholar 

  114. Fendler JH (1987) Atomic and Molecular Clusters in Membrane Mimetic Chemistry. Chem Rev 87:877–899

    CAS  Google Scholar 

  115. Wilcoxon JP, Williamson RL, Baughman R (1993) Optical-Properties of Gold Colloids Formed in Inverse Micelles. J Chem Phys 98:9933–9950

    CAS  Google Scholar 

  116. Spirin MG, Brichkin SB, Razumov VF (2005) Synthesis and stabilization of gold nanoparticles in reverse micelles of aerosol OT and triton X-100. Colloid J 67:485–490

    CAS  Google Scholar 

  117. Herrera AP, Resto O, Briano JG, Rinaldi C (2005) Synthesis and agglomeration of gold nanoparticles in reverse micelles. Nanotechnology 16:S618–S625

    Google Scholar 

  118. Sato H, Ohtsu T, Komasawa I (2000) Atomic force microscopy study of ultrafine particles prepared in reverse micelles. J Colloid Interface Sci 230:200–204

    CAS  Google Scholar 

  119. Chiang CL (2000) Controlled growth of gold nanoparticles in aerosol-OT/sorbitan monooleate/isooctane mixed reverse micelles. J Colloid Interface Sci 230:60–66

    CAS  Google Scholar 

  120. Pomogailo AD, Rozenberg AS, Uflyand IE (2000) Nanochastitsy metallov v polimerakh (Metal Nanoparticles in Polymers). Khimiya, Moscow

    Google Scholar 

  121. Brichkin SB, Razumov VF, Spirin MG (2000) Kolloidn Zh 62:12

    Google Scholar 

  122. Pal A (2004) Photochemical synthesis of gold nanoparticles via controlled nucleation using a bioactive molecule. Mater Lett 58:529–534

    CAS  Google Scholar 

  123. Chiang CL (2001) Controlled growth of gold nanoparticles in AOT/C12E4/isooctane mixed reverse micelles. J Colloid Interface Sci 239:334–341

    CAS  Google Scholar 

  124. Neuman RD, Ibrahim TH (1999) Novel structural model of reversed micelles: The open water-channel model. Langmuir 15:10–12

    CAS  Google Scholar 

  125. Kumar R, Maitra AN, Patanjali PK, Sharma P (2005) Hollow gold nanoparticles encapsulating horseradish peroxidase. Biomaterials 26:6743–6753

    CAS  Google Scholar 

  126. Manna A, Imae T, Yogo T, Aoi K, Okazaki M (2002) Synthesis of gold nanoparticles in a Winsor II type microemulsion and their characterization. J Colloid Interface Sci 256:297–303

    CAS  Google Scholar 

  127. Lin J, Zhou WL, O'Connor CJ (2001) Formation of ordered arrays of gold nanoparticles from CTAB reverse micelles. Mater Lett 49:282–286

    CAS  Google Scholar 

  128. Barnickel P, Wokaun A (1990) Synthesis of Metal Colloids in Inverse Microemulsions. Mol Phys 69:1–9

    CAS  Google Scholar 

  129. Porta F, Prati L, Rossi M, Scari G (2002) Synthesis of Au(0) nanoparticles from W/O microemulsions. Colloids Surf A 211:43–48

    CAS  Google Scholar 

  130. Giustini M, Palazzo G, Colafemmina G, DellaMonica M, Giomini M, Ceglie A (1996) Microstructure and dynamics of the water-in-oil CTAB/n-pentanol/n-hexane/water microemulsion: A spectroscopic and conductivity study. J Phys Chem 100:3190–3198

    CAS  Google Scholar 

  131. Torigoe K, Esumi K (1992) Preparation of Colloidal Gold by Photoreduction of Aucl4–Cationic Surfactant Complexes. Langmuir 8:59–63

    CAS  Google Scholar 

  132. Kameo A, Suzuki A, Torigoe K, Esumi K (2001) Fiber-like Gold Particles Prepared in Cationic Micelles by UV Irradiation: Effect of Alkyl Chain Length of Cationic Surfactant on Particle Size. J Colloid Interface Sci 241:89–292

    Google Scholar 

  133. Leontidis E, Kleitou K, Kyprianidou-Leodidou T, Bekiari V, Lianos P (2002) Gold colloids from cationic surfactant solutions. 1. Mechanisms that control particle morphology. Langmuir 18:3659–3668

    CAS  Google Scholar 

  134. Chen FX, Xu GQ, Hor TSA (2003) Preparation and assembly of colloidal gold nanoparticles in CTAB-stabilized reverse microemulsion. Mater Lett 57:3282–3286

    CAS  Google Scholar 

  135. Esumi K, Matsuhisa K, Torigoe K (1995) Preparation of Rodlike Gold Particles by UV Irradiation Using Cationic Micelles as a Template. Langmuir 11:3285–3287

    CAS  Google Scholar 

  136. Imae T, Ikeda S (1987) Characteristics of Rodlike Micelles of Cetyltrimethylammonium Chloride in Aqueous Nacl Solutions – Their Flexibility and the Scaling Laws in Dilute and Semidilute Regimes. Colloid Polym Sci 265:1090–1098

    CAS  Google Scholar 

  137. Lee YS, Surjadi D, Rathman JF (1996) Effects of aluminate and silicate on the structure of quaternary ammonium surfactant aggregates. Langmuir 12:6202–6210

    CAS  Google Scholar 

  138. Ozeki S, Ikeda S (1981) The Stability of Spherical Micelles of Dodecyltrimethylammonium Chloride in Aqueous Nacl Solutions. Bull Chem Soc Japan 54:552–555

    CAS  Google Scholar 

  139. Xu J, Han X, Liu H L, Hu Y (2005) Synthesis of monodisperse gold nanoparticles stabilized by gemini surfactant in reverse micelles. J Dispers Sci Technol 26:473–476

    CAS  Google Scholar 

  140. Azene H, Sigers S, Johnson V (2003) Formation and characterization of gold nanoparticles in dioctyl sulfosuccinate/isooctane and dioctyl sulfosuccinate/phosphatidyulcholine/isooctane mixed reverse micelles. Abstr Pap Am Chem Soc 225:U23–U23

    Google Scholar 

  141. Shen M, Du YK, Rong HL, Li JR, Jiang L (2005) Preparation of hydrophobic gold nanoparticles with safe organic solvents by microwave irradiation method. Colloids Surf A 257–258:439–443

    Google Scholar 

  142. Khomutov GB, Gubin SP (2002) Interfacial synthesis of noble metal nanoparticles. Mater Sci Eng C 22:141–146

    Google Scholar 

  143. Ravaine S, Fanucci GE, Seip CT, Adair JH, Talham DR (1998) Photochemical generation of gold nanoparticles in Langmuir–Blodgett films. Langmuir 14:708–713

    CAS  Google Scholar 

  144. Johnson SR, Evans SD, Mahon SW, Ulman A (1997) Synthesis and characterisation of surfactant-stabilised gold nanoparticles. Supramol Sci 4:329–333

    CAS  Google Scholar 

  145. Praharaj S, Ghosh SK, Nath S, Kundu S, Panigrahi S, Basu S, Pal T (2005) Size-selective synthesis and stabilization of gold organosol in CnTAC: Enhanced molecular fluorescence from gold-bound fluorophores. J Phys Chem B 109:13166–13174

    CAS  Google Scholar 

  146. Prasad BLV, Stoeva SI, Sorensen CM, Klabunde KJ (2002) Digestive ripening of thiolated gold nanoparticles: The effect of alkyl chain length. Langmuir 18:7515–7520

    CAS  Google Scholar 

  147. Mafune F, Kohno J, Takeda Y, Kondow T, Sawabe H (2000) Structure and stability of silver nanoparticles in aqueous solution produced by laser ablation. J Phys Chem B 104:8333–8337

    CAS  Google Scholar 

  148. Mafune F, Kohno J, Takeda Y, Kondow T, Sawabe H (2000) Formation and size control of sliver nanoparticles by laser ablation in aqueous solution. J Phys Chem B 104:9111–9117

    CAS  Google Scholar 

  149. Ankamwar B, Damle C, Ahmad A, Sastry M (2005) Biosynthesis of gold and silver nanoparticles using Emblica officinalis fruit extract, their phase transfer and transmetallation in an organic solution. J Nanosci Nanotechnol 5:1665–1671

    CAS  Google Scholar 

  150. Maeda Y, Okitsu K, Inoue H, Nishimura R, Mizukoshi Y, Nakui H (2004) Preparation of nanoparticles by reducing intermediate radicals formed in sonolytical pyrolysis of surfactants. Res Chem Intermediat 30:775–783

    CAS  Google Scholar 

  151. Murphy CJ, Sau TK, Gole A, Orendorff CJ (2005) Surfactant-directed synthesis and optical properties of one-dimensional plasmonic metallic nanostructures. MRS Bull 30:349–355

    CAS  Google Scholar 

  152. Reetz MT, Helbig W (1994) Size-Selective Synthesis of Nanostructured Transition-Metal Clusters. J Am Chem Soc 116:7401–7402

    CAS  Google Scholar 

  153. Reetz MT, Helbig W, Quaiser SA, Stimming U, Breuer N, Vogel R (1995) Visualization of Surfactants on Nanostructured Palladium Clusters by a Combination of STM and High-Resolution TEM. Science 267:367–369

    CAS  Google Scholar 

  154. Yu YY, Chang SS, Lee CL, Wang CRC (1997) Gold nanorods: Electrochemical synthesis and optical properties. J Phys Chem B 101:6661–6664

    CAS  Google Scholar 

  155. Chang SS, Shih CW, Chen CD, Lai WC, Wang CRC (1999) The shape transition of gold nanorods. Langmuir 15:701–709

    CAS  Google Scholar 

  156. Zsigmondy R, Thiessen PA (1925) Das kolloide Gold. Akademische Verlagsgesellschaft mbh, Leipzig

    Google Scholar 

  157. Brown KR, Walter DG, Natan MJ (2000) Seeding of colloidal Au nanoparticle solutions, 2. Improved control of particle size and shape. Chem Mater 12:306–313

    CAS  Google Scholar 

  158. Goia DV, Matijevic E (1998) Preparation of monodispersed metal particles. New J Chem 22:1203–1215

    CAS  Google Scholar 

  159. Schmid G (1992) Large Clusters and Colloids – Metals in the Embryonic State. Chem Rev 92:1709–1727

    CAS  Google Scholar 

  160. Sau TK, Pal A, Jana NR, Wang ZL, Pal T (2001) Size controlled synthesis of gold nanoparticles using photochemically prepared seed particles. J Nanoparticle Res 3:257–261

    CAS  Google Scholar 

  161. Lu LH, Wang HS, Zhou YH, Xi SQ, Zhang HJ, Jiawen HBM, Zhao B (2002) Seed-mediated growth of large, monodisperse core-shell gold-silver nanoparticles with Ag-like optical properties. Chem Commun, pp 144–145

    Google Scholar 

  162. Jana NR, Gearheart L, Murphy CJ (2001) Evidence for seed-mediated nucleation in the chemical reduction of gold salts to gold nanoparticles. Chem Mater 13:2313–2322

    CAS  Google Scholar 

  163. Gao JX, Bender CM, Murphy CJ (2003) Dependence of the gold nanorod aspect ratio on the nature of the directing surfactant in aqueous solution. Langmuir 19:9065–9070

    CAS  Google Scholar 

  164. Loo C, Lin A, Hirsch L, Lee MH, Barton J, Halas N, West J, Drezek R (2004) Nanoshell-enabled photonics-based imaging and therapy of cancer. Technol Cancer Res Treat 3:33–40

    CAS  Google Scholar 

  165. Mafune F, Kohno J, Takeda Y, Kondow T, Sawabe H (2001) Formation of gold nanoparticles by laser ablation in aqueous solution of surfactant. J Phys Chem B 105:5114–5120

    CAS  Google Scholar 

  166. Mafune F, KohnoJ Y, Takeda Y, Kondow T (2002) Full physical preparation of size-selected gold nanoparticles in solution: Laser ablation and laser-induced size control. J Phys Chem B 106:7575–7577

    CAS  Google Scholar 

  167. Niidome Y, Hori A, Sato T, Yamada S (2000) Enormous size growth of thiol-passivated gold nanoparticles induced by near-IR laser light. Chem Lett 4:310–311

    Google Scholar 

  168. Kamat PV, Flumiani M, Hartland GV (1998) Picosecond dynamics of silver nanoclusters. Photoejection of electrons and fragmentation. J Phys Chem B 102:3123–3128

    CAS  Google Scholar 

  169. Mafune F, Kohno J, Takeda Y, Kondow T (2003) Formation of gold nanonetworks and small gold nanoparticles by irradiation of intense pulsed laser onto gold nanoparticles. J Phys Chem B 107:12589–12596

    CAS  Google Scholar 

  170. Alivisatos AP (1996) Perspectives on the physical chemistry of semiconductor nanocrystals. J Phys Chem 100:13226–13239

    CAS  Google Scholar 

  171. Gaponenko SV (1998) Optical properties of semiconductor nanocrystals. Cambridge Unviersity Press, Cambridge, New York

    Google Scholar 

  172. Weller H, Koch U, Gutierrez M, Henglein A (1984) Photochemistry of Colloidal Metal Sulfides, 7. Absorption and Fluorescence of Extremely Small Zns Particles – the World of the Neglected Dimensions. Ber Bunsenges 88:649–656

    CAS  Google Scholar 

  173. Eychmuller A, Mews A, Weller H (1993) A Quantum-Dot Quantum-Well – Cds/Hgs/Cds. Chem Phys Lett 208:59–62

    Google Scholar 

  174. Guzelian AA, Katari JEB, Kadavanich AV, Banin U, Hamad K, Juban E, Alivisatos AP, Wolters RH, Arnold CC, Heath JR (1996) Synthesis of size-selected, surface-passivated InP nanocrystals. J Phys Chem 100:7212–7219

    CAS  Google Scholar 

  175. Mattoussi H, Mauro JM, Goldman ER, Anderson GP, Sundar VC, Mikulec FV, Bawendi MG (2000) Self-assembly of CdSe-ZnS quantum dot bioconjugates using an engineered recombinant protein. J Am Chem Soc 122:12142–12150

    CAS  Google Scholar 

  176. Peng ZA, Peng XG (2001) Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. J Am Chem Soc 123:183–184

    CAS  Google Scholar 

  177. Jaiswal JK, Mattoussi H, Mauro JM, Simon SM (2003) Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nat Biotechnol 21:47–51

    CAS  Google Scholar 

  178. Cao YW, Banin U (2000) Growth and properties of semiconductor core/shell nanocrystals with InAs cores. J Am Chem Soc 122:9692–9702

    CAS  Google Scholar 

  179. Micic OI, Smith BB, Nozik AJ (2000) Core-shell quantum dots of lattice-matched ZnCdSe2 shells on InP cores: Experiment and theory. J Phys Chem B 104:12149–12156

    CAS  Google Scholar 

  180. Ballou B, Lagerholm BC, Ernst LA, Bruchez MP, Waggoner AS (2004) Noninvasive imaging of quantum dots in mice. Bioconjug Chem 15:79–86

    CAS  Google Scholar 

  181. Goldman ER, Anderson GP, Tran PT, Mattoussi H, Charles PT, Mauro JM (2002) Conjugation of luminescent quantum dots with antibodies using an engineered adaptor protein to provide new reagents for fluoroimmunoassays. Anal Chem 74:841–847

    CAS  Google Scholar 

  182. Gerion D, Pinaud F, Williams SC, Parak WJ, Zanchet D, Weiss S, Alivisatos AP (2001) Synthesis and properties of biocompatible water-soluble silica-coated CdSe/ZnS semiconductor quantum dots. J Phys Chem B 105:8861–8871

    CAS  Google Scholar 

  183. Dubertret B, Skourides P, Norris DJ, Noireaux V, Brivanlou AH, Libchaber A (2002) In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 298:1759–1762

    CAS  Google Scholar 

  184. Santra S, Yang H, Holloway PH, Stanley JT, Mericle RA (2005) Synthesis of water-dispersible fluorescent, radio-opaque, and paramagnetic CdS:Mn/ZnS quantum dots: a multifunctional probe for bioimaging. J Am Chem Soc 127:1656–1657

    CAS  Google Scholar 

  185. Santra S, Yang H, Stanley JT, Holloway PH, Moudgil BM, Walter G, Mericle RA (2005) Rapid and effective labeling of brain tissue using TAT-conjugated CdS: Mn/ZnS quantum dots. Chem Commun, pp 3144–3146

    Google Scholar 

  186. Esteves ACC, Trindade T (2002) Synthetic studies on II/VI semiconductor quantum dots. Curr Opin Solid State Mater Sci 6:347–353

    CAS  Google Scholar 

  187. Brus LE (1984) Electron–Electron and Electron–Hole Interactions in Small Semiconductor Crystallites - the Size Dependence of the Lowest Excited Electronic State. J Chem Phys 80:4403–4409

    CAS  Google Scholar 

  188. Henglein A (1989) Small-Particle Research – Physicochemical Properties of Extremely Small Colloidal Metal and Semiconductor Particles. Chem Rev 89:1861–1873

    CAS  Google Scholar 

  189. Wang WZ, Liu ZH, Zheng CL, Xu CK, Liu YK, Wang GH (2003) Synthesis of US nanoparticles by a novel and simple one-step, solid-state reaction in the presence of a nonionic surfactant. Mater Lett 57:2755–2760

    CAS  Google Scholar 

  190. Gan LM, Liu B, Chew CH, Xu SJ, Chua SJ, Loy GL, Xu GQ (1997) Enhanced photoluminescence and characterization of Mn-doped ZnS nanocrystallites synthesized in microemulsion. Langmuir 13:6427–6431

    CAS  Google Scholar 

  191. Yang XH, Wu QS, Li L, Ding YP, Zhang GX (2005) Controlled synthesis of the semiconductor CdS quasi-nanospheres, nanoshuttles, nanowires and nanotubes by the reverse micelle systems with different surfactants. Colloids Surf A 264:172–178

    CAS  Google Scholar 

  192. Zhang B, Li GH, Zhang J, Zhang Y, Zhang LD (2003) Synthesis and characterization of PbS nanocrystals in water/C12E9/cyclohexane microemulsions. Nanotechnology 14:443–446

    CAS  Google Scholar 

  193. Robinson BH, Towey TF, Zourab S, Visser AJWG, Vanhoek A (1991) Characterization of Cadmium-Sulfide Colloids in Reverse Micelles. Colloids Surf 61:175–188

    CAS  Google Scholar 

  194. Qi LM, Ma JM, Cheng HM, Zhao ZG (1996) Synthesis and characterization of mixed CdS-ZnS nanoparticles in reverse micelles. Colloids Surf A 111:195–202

    CAS  Google Scholar 

  195. Zou BS, Little RB, Wang JP, El-Sayed MA (1999) Effect of different capping environments on the optical properties of CdS nanoparticles in reverse micelles. Int J Quantum Chem 72:439–450

    CAS  Google Scholar 

  196. Seddon AB, Ou DL (1998) CdSe quantum dot doped amine-functionalized Ormosils. J Sol–Gel Sci Technol 13:623–628

    CAS  Google Scholar 

  197. Guo B, Pang Q, Yang C, Ge W, Yang S, Wang J (2005) Reverse micelles synthesis and optical characterization of manganese doped CdSe quantum dots. Department of Physics, Hong Kong University of Science and Technology, Hong Kong, Peop. Rep. China. AIP Conference Proceedings, 772 (Physics of Semiconductors, Part A), pp 605–606

    Google Scholar 

  198. Kim D, Miyamoto M, Nakayama M (2005) Photoluminescence properties of CdS and CdMnS quantum dots prepared by a reverse-micelle method. J Electron Microsc 54:I31–I34

    CAS  Google Scholar 

  199. Quinlan FT, Kuther J, Tremel W, Knoll W, Risbud S, Stroeve P (2000) Reverse micelle synthesis and characterization of ZnSe nanoparticles. Langmuir 16:4049–4051

    CAS  Google Scholar 

  200. Calandra P, Goffredi M, Liveri VT (1999) Study of the growth of ZnS nanoparticles in water/AOT/n-heptane microemulsions by UV-absorption spectroscopy. Colloids Surf A 160:9–13

    CAS  Google Scholar 

  201. Hirai T, Watanabe T, Komasawa I (2000) Preparation of semiconductor nanoparticle-polymer composites by direct reverse micelle polymerization using polymerizable surfactants. J Phys Chem B 104:8962–8966

    CAS  Google Scholar 

  202. Cao LX, Zhang JH, Ren SL, Huang SH (2002) Luminescence enhancement of core-shell ZnS : Mn/ZnS nanoparticles. Appl Phys Lett 80:4300–4302

    CAS  Google Scholar 

  203. Cao LX, Huang SH, Shulin E (2004) ZnS/CdS/ZnS quantum dot quantum well produced in inverted micelles. J Colloid Interface Sci 273:478–482

    CAS  Google Scholar 

  204. Lianos P, Thomas JK (1986) Cadmium-Sulfide of Small Dimensions Produced in Inverted Micelles. Chem Phys Lett 125:299–302

    CAS  Google Scholar 

  205. Lianos P, Thomas JK (1987) Small Cds Particles in Inverted Micelles. J Colloid Interface Sci 117:505–512

    CAS  Google Scholar 

  206. Nakanishi T, Ohtani B, Uosaki K (1998) Fabrication and characterization of CdS-nanoparticle mono- and multilayers on a self-assembled monolayer of alkanedithiols on gold. J Phys Chem B 102:1571–1577

    CAS  Google Scholar 

  207. Tsuruoka T, Akamatsu K, Nawafune H (2004) Synthesis, surface modification, and multilayer construction of mixed-monolayer-protected CdS nanoparticles. Langmuir 20:11169–11174

    CAS  Google Scholar 

  208. Steigerwald ML, Alivisatos AP, Gibson JM, Harris TD, Kortan R, Muller AJ, Thayer AM, Duncan TM, Douglass DC, Brus LE (1988) Surface Derivatization and Isolation of Semiconductor Cluster Molecules. J Am Chem Soc 110:3046–3050

    CAS  Google Scholar 

  209. Zulauf M, Eicke HF (1979) Inverted Micelles and Microemulsions in the Ternary-System H2o-Aerosol-Ot-Isooctane as Studied by Photon Correlation Spectroscopy. J Phys Chem 83:480–486

    CAS  Google Scholar 

  210. Hirai T, Okubo H, Komasawa I (2001) Incorporation of CdS nanoparticles formed in reverse micelles into mesoporous silica. J Colloid Interface Sci 235:358–364

    CAS  Google Scholar 

  211. Kortan AR, Hull R, Opila RL, Bawendi MG, Steigerwald ML, Carroll PJ, Brus LE (1990) Nucleation and Growth of Cdse on Zns Quantum Crystallite Seeds, and Vice Versa, in Inverse Micelle Media. J Am Chem Soc 112:1327–1332

    CAS  Google Scholar 

  212. Towey TF, Khanlodhi A, Robinson BH (1990) Kinetics and Mechanism of Formation of Quantum-Sized Cadmium-Sulfide Particles in Water Aerosol-Ot Oil Microemulsions. J Chem Soc Faraday Trans 86:3757–3762

    CAS  Google Scholar 

  213. Meyer M, Wallberg C, Kurihara K, Fendler JH (1984) Photosensitized Charge Separation and Hydrogen-Production in Reversed Micelle Entrapped Platinized Colloidal Cadmium-Sulfide. J Chem Soc Chem Commun, pp 90–91

    Google Scholar 

  214. Tata M, Banerjee S, John VT, Waguespack Y, McPherson GL (1997) Fluorescence quenching of CdS nanocrystallites in AOT water-in-oil microemulsions. Colloids Surf A 127:39–46

    CAS  Google Scholar 

  215. Bunker CE, Harruff BA, Pathak P, Payzant A, Allard LF, Sun YP (2004) Formation of cadmium sulfide nanoparticles in reverse micelles: Extreme sensitivity to preparation procedure. Langmuir 20:5642–5644

    CAS  Google Scholar 

  216. Pileni MP, Motte L, Petit C (1992) Synthesis of Cadmium-Sulfide Insitu in Reverse Micelles – Influence of the Preparation Modes on Size, Polydispersity, and Photochemical Reactions. Chem Mater 4:338–345

    CAS  Google Scholar 

  217. Fischer CH, Weller H, Fojtik A, Lumepereira C, Janata E, Henglein A (1986) Photochemistry of Colloidal Semiconductors, 10. Exclusion Chromatography and Stop Flow Experiments on the Formation of Extremely Small Cds Particles. Ber Bunsenges 90:46–49

    CAS  Google Scholar 

  218. Hirai T, Bando Y (2005) Immobilization of CdS nanoparticles formed in reverse micelles onto aluminosilicate supports and their photocatalytic properties. J Colloid Interface Sci 288:513–516

    CAS  Google Scholar 

  219. Hirai T, Bando Y, Komasawa I (2002) Immobilization of CdS nanoparticles formed in reverse micelles onto alumina particles and their photocatalytic properties. J Phys Chem B 106:8967–8970

    CAS  Google Scholar 

  220. Simmons B, Li CS, John VT, McPherson GL, Taylor C, Schwartz DK, Maskos K (2002) Spatial compartmentalization of nanoparticles into strands of a self-assembled organogel. Nano Lett 2:1037–1042

    CAS  Google Scholar 

  221. Kotlarchyk M, Stephens RB, Huang JS (1988) Study of Schultz Distribution to Model Polydispersity of Microemulsion Droplets. J Phys Chem 92:1533–1538

    CAS  Google Scholar 

  222. Israelachvili JN (1991) Intermolecular and surface forces. Academic Press, London, San Diego

    Google Scholar 

  223. Zhou Y, Itoh H, Uemura T, Naka K, Chujo Y (2002) Preparation, optical spectroscopy, and electrochemical studies of novel pi-conjugated polymer-protected stable PbS colloidal nanoparticles in a nonaqueous solution. Langmuir 18:5287–5292

    CAS  Google Scholar 

  224. Gadenne P, Yagil Y, Deutscher G (1989) Transmittance and Reflectance Insitu Measurements of Semicontinuous Gold-Films During Deposition. J Appl Phys 66:3019–3025

    CAS  Google Scholar 

  225. Chaudhuri TK (1992) A Solar Thermophotovoltaic Converter Using Pbs Photovoltaic Cells. Int J Energ Res 16:481–487

    CAS  Google Scholar 

  226. Wu XS, Pan LJ, Zou G, Liu JP, He PS (2004) Preparation of PbS/poly(acrylic acid) nanocrystal micropatterns by soft lithography. Chinese J Chem Phys 17:641–644

    CAS  Google Scholar 

  227. Nair PK, Nair MTS (1992) Chemically Deposited Zns Thin-Films – Application as Substrate for Chemically Deposited Bi2s3, Cuxs and Pbs Thin-Films. Semiconductor Sci Technol 7:239–244

    CAS  Google Scholar 

  228. Eastoe J, Cox AR (1995) Formation of Pbs Nanoclusters Using Reversed Micelles of Lead and Sodium Aerosol-Ot. Colloids Surf A 101:63–76

    CAS  Google Scholar 

  229. Miyoshi H, Yamachika M, Yoneyama H, Mori H (1990) Photochemical Properties of PbS Microcrystallites Prepared in Nafion. J Chem Soc Faraday Trans 86:815–818

    CAS  Google Scholar 

  230. Aggarwal RL, Furdyna JK, Von S (1987) Molnar and Materials Research Society. Diluted magnetic (semimagnetic) semiconductors. Materials Research Society, Pittsburgh

    Google Scholar 

  231. Bastard G, Rigaux C Mycielski A (1977) Giant Spin Splitting Induced by Exchange Interactions in Hg1-Kmnkte Mixed-Crystals. Phys Status Solidi B 79:585–593

    CAS  Google Scholar 

  232. Dietl T, Spalek J (1982) Effect of Fluctuations of Magnetization on the Bound Magnetic Polaron – Comparison with Experiment. Phys Rev Lett 48:355–358

    CAS  Google Scholar 

  233. Bhargava RN, Gallagher D, Hong X, Nurmikko A (1994) Optical-Properties of Manganese-Doped Nanocrystals of Zns. Phys Rev Lett 72:416–419

    CAS  Google Scholar 

  234. Wang Y, Herron N, Moller K, Bein T (1991) 3-Dimensionally Confined Diluted Magnetic Semiconductor Clusters – Zn1-Xmnxs. Solid State Commun 77:33–38

    CAS  Google Scholar 

  235. Feltin N, Levy L, Ingert D, Pileni MP (1999) Magnetic properties of 4-nm Cd1-yMnyS nanoparticles differing by their compositions, y. J Phys Chem B 103:4–10

    CAS  Google Scholar 

  236. Levy L, Feltin N, Ingert D, Pileni MP (1997) Three dimensionally diluted magnetic semiconductor clusters Cd1-yMnyS with a range of sizes and compositions: Dependence of spectroscopic properties on the synthesis mode. J Phys Chem B 101:9153–9160

    CAS  Google Scholar 

  237. Levy L, Hochepied JF, Pileni MP (1996) Control of the size and composition of three dimensionally diluted magnetic semiconductor clusters. J Phys Chem 100:18322–18326

    CAS  Google Scholar 

  238. Hoener CF, Allan KA, Bard AJ, Campion A, Fox MA, Mallouk TE, Webber SE, White JM (1992) Demonstration of a Shell Core Structure in Layered CdSe-ZnSe Small Particles by X-Ray Photoelectron and Auger Spectroscopies. J Phys Chem 96:3812–3817

    CAS  Google Scholar 

  239. Yang H S, Santra S Holloway PH (2005) Syntheses and applications of Mn-doped II-VI semiconductor nanocrystals. J Nanosci Nanotechnol 5:1364–1375

    CAS  Google Scholar 

  240. Yang HS, Holloway PH, Santra S (2004) Water-soluble silica-overcoated CdS : Mn/ZnS semiconductor quantum dots. J Chem Phys 121:7421–7426

    CAS  Google Scholar 

  241. Pang Q, Guo BC, Wang JN, Yang SH, Wang YQ, Ge WK, Gong ML (2004) Synthesis of Cd1-xMnxS quantum dots via reverse micelles and its photoluminescence performance. Chem J Chinese Universities 25:1593–1596

    CAS  Google Scholar 

  242. Khomane RB, Manna A, Mandale AB, Kulkarni BD (2002) Synthesis and characterization of dodecanethiol-capped cadmium sulfide nanoparticles in a Winsor II microemulsion of diethyl ether/AOT/water. Langmuir 18:8237–8240

    CAS  Google Scholar 

  243. Fan HY, Leve HY, Scullin C, Gabaldon J, Tallant D, Bunge S, Boyle T, Wilson MC, Brinker CJ (2005) Surfactant-assisted synthesis of water-soluble and biocompatible semiconductor quantum dot micelles. Nano Lett 5:645–648

    CAS  Google Scholar 

  244. Dutta P, Fendler JH (2002) Preparation of cadmium sulfide nanoparticles in self-reproducing reversed micelles. J Colloid Interface Sci 247:47–53

    CAS  Google Scholar 

  245. Zhang J, Sun LD, Liao CS, Yan CH (2002) Size control and photoluminescence enhancement of CdS nanoparticles prepared via reverse micelle method. Solid State Commun 124:45–48

    CAS  Google Scholar 

  246. Agostiano A, Catalano M, Curri ML, Della Monica M, Manna L, Vasanelli L (2000) Synthesis and structural characterisation of CdS nanoparticles prepared in a four-components “water-in-oil” microemulsion. Micron 31:253–258

    CAS  Google Scholar 

  247. Curri ML, Agostiano A, Manna L, Della Monica M, Catalano M, Chiavarone L, Spagnolo V, Lugara M (2000) Synthesis and characterization of CdS nanoclusters in a quarternary microemulsion: The role of the cosurfactant. J Phys Chem B 104:8391–8397

    CAS  Google Scholar 

  248. Maidment LJ, Chen V, Warr GG (1997) Effect of added cosurfactant on ternary microemulsion structure and dynamics. Colloids Surf A 130:311–319

    Google Scholar 

  249. Chakraborty I, Moulik SP (2004) Preparation and characterization of nanoscale semiconductor particles of ZnS, CdS, and PbCrO4 in polymer-surfactant gel matrix. J Dispers Sci Technol 25:849–859

    CAS  Google Scholar 

  250. Neumann E, Sowers AE, Jordan CA (1989) Electroporation and electrofusion in cell biology. Plenum Press, New York

    Google Scholar 

  251. Wu SX, Zeng HX, Schelly ZA (2005) Preparation of ultrasmall, uncapped PbS quantum dots via electroporation of vesicles. Langmuir 21:686–691

    CAS  Google Scholar 

  252. Yu WL, Pei J, Huang W, Zhao GX (1997) Formation of CdS nanoparticles in mixed cationic–anionic surfactant vesicle system. Mater Chem Phys 49:87–92

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brij Moudgil .

Editor information

Ranga Narayanan

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sharma, P., Brown, S., Varshney, M., Moudgil, B. (2008). Surfactant-Mediated Fabrication of Optical Nanoprobes. In: Narayanan, R. (eds) Interfacial Processes and Molecular Aggregation of Surfactants. Advances in Polymer Science, vol 218. Springer, Berlin, Heidelberg. https://doi.org/10.1007/12_2008_166

Download citation

Publish with us

Policies and ethics