Skip to main content

Catalysis of Diazoalkane–Carbonyl Homologation. How New Developments in Hydrazone Oxidation Enable the Carbon Insertion Strategy for Synthesis

  • Chapter
  • First Online:
C-C Bond Activation

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 346))

Abstract

Diazo compounds continue both to challenge and to fascinate practitioners of chemical synthesis. The most strategically powerful and unique type of reactivity observed with these reagents is a formal insertion of the donor-acceptor carbon into C–C or C–H bonds alpha to carbonyl groups. Although the reaction does not involve discrete carbon–metal bonds, it can be catalyzed by metal-based Lewis acids. This chapter investigates both classical and modern developments in diazoalkyl carbon insertion with a special emphasis on nonstabilized nucleophiles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Interestingly, Tiffeneau–Demjanov rearrangement provides mostly the α-ketone product in an 85:15 ratio of regioisomers (determined by IR spectroscopy); see [83])

    figure a
  2. 2.

    See [90].

    figure b
  3. 3.

    See [102].

    figure c
  4. 4.

    Readily prepared by treating trimethylaluminum with two equivalents of BHT; see [99].

  5. 5.

    The cis/trans configuration of 2-methyl-5-tert-butylcycloheptanone was established following equilibration in methanolic NaOCH3.

  6. 6.

    The less electron-poor, more hindered Lewis acids (Sc(acac)3 and Sc(tmhd)3) were substituted for Sc(OTf)3 in reactions with more Lewis basic diazoalkanes in order to maximize the yield of product (tmhd = 2,2,6,6-tetramethyl-3,5-heptanedianato, or tert-butyl(acac)). See [99] and citations therein for more details on the Lewis-acid mediated destruction of diazoalkanes.

  7. 7.

    p-(Methoxy)phenyldiazomethane is a potent Lewis base and has been reported to decompose at temperatures as low as –80° C; see [125].

  8. 8.

    Yields in Fig. 4 were determined by manometric titration, as described in [51].

  9. 9.

    Iodobenzene bis(trifluoroacetate) can substitute for lead(IV) acetate with little or no impact on the yield of diazoalkane, but the nonpolar extract becomes contaminated by residual iodobenzene.

References

  1. Curtius T (1883) Ber Dtsch Chem Ges 16:2230

    Google Scholar 

  2. Pechmann HV (1891) Ber Dtsch Chem Ges 27:1888

    Google Scholar 

  3. Gutsche CD (1954) Org Reactions 8:364

    Google Scholar 

  4. Gutsche CD, Redmore D (1968) In: Hart H, Karabatsos GJ (eds) Carbocyclic ring expansion reactions. Academic, New York, pp 81–98

    Google Scholar 

  5. Holmquist CR, Roskamp EJ (1989) J Org Chem 54:3258

    CAS  Google Scholar 

  6. Holmquist CR, Roskamp EJ (1992) Tetrahedron Lett 33:1131

    CAS  Google Scholar 

  7. Bug T, Hartnagel M, Schlierf C, Mayr H (2003) Chem Eur J 9:4068

    CAS  Google Scholar 

  8. Mayr H, Bug T, Gotta MF, Hering N, Irrgang B, Janker B, Kempf B, Loos R, Ofial AR, Remennikov G, Schimmel H (2001) J Am Chem Soc 123:9500

    CAS  Google Scholar 

  9. Regitz M, Maas G (1986) Diazo compounds–properties and synthesis. Academic, Orlando

    Google Scholar 

  10. Doyle MP, McKervey MA, Ye T (1998) Modern catalytic methods for organic synthesis with diazo compounds. Wiley, New York

    Google Scholar 

  11. Ye T, McKervey MA (1994) Chem Rev 94:1091

    CAS  Google Scholar 

  12. De Boer TJ, Backer HJ (1963) Organic Syntheses Collective, vol 4. Wiley, New York, p 250

    Google Scholar 

  13. Hudlicky M (1980) J Org Chem 45:5377

    CAS  Google Scholar 

  14. Clark J, Shah A, Peterson J, Patelis L, Kersten R, Heemskerk A, Grogan M, Camden S (2002) Thermochim Acta 386:65

    CAS  Google Scholar 

  15. Clark J, Shah A, Peterson J, Patelis L, Kersten R, Heemskerk A (2002) Thermochim Acta 386:73

    CAS  Google Scholar 

  16. Proctor LD, Warr AJ (2002) Org Process Res Dev 6:884

    CAS  Google Scholar 

  17. Furrow ME, Myers AG (2004) J Am Chem Soc 126:12222

    CAS  Google Scholar 

  18. Kühnel E, Laffan DDP, Lloyd-Jones GC, Martínez Del Campo T, Shepperson IR, Slaughter JL (2007) Angew Chem Int Ed 46:7075

    Google Scholar 

  19. Roberts JD, Watanabe W (1950) J Am Chem Soc 72:4869

    CAS  Google Scholar 

  20. Roberts JD, Watanabe W, McMahon RE (1951) J Am Chem Soc 73:760

    CAS  Google Scholar 

  21. Roberts JD, Watanabe W, McMahon RE (1951) J Am Chem Soc 73:2521

    CAS  Google Scholar 

  22. Roberts JD, Regan CM (1952) J Am Chem Soc 74:3695

    CAS  Google Scholar 

  23. Müller E, Bauer M, Rundel W (1959) Z Naturforsch 14b:209

    Google Scholar 

  24. Müller E, Rundel W (1958) Angew Chem 70:105

    Google Scholar 

  25. Müller E, Meischkeil R, Bauer M (1964) Annalen 677:55

    Google Scholar 

  26. Müller E, Rundel W, Huber-Emden H (1957) Angew Chem 69:614

    Google Scholar 

  27. Müller E, Huber-Emden H (1961) Annalen 649:70

    Google Scholar 

  28. Müller E, Huber-Emden H, Rundel W (1959) Annalen 623:34

    Google Scholar 

  29. Neeman M, Caserio MC, Roberts JD, Johnson WS (1959) Tetrahedron 6:36

    CAS  Google Scholar 

  30. Neeman M, Caserio MC, Roberts JD, Johnson WS (1958) J Am Chem Soc 80:2584

    Google Scholar 

  31. Pechmann HV (1895) Ber Dtsch Chem Ges 28:855

    CAS  Google Scholar 

  32. Smith LI (1938) Chem Rev 23:193

    CAS  Google Scholar 

  33. Huisgen R, Grashey R, Sauer J (1964) In: Patai S (ed) The chemistry of alkenes. Interscience, London, p 739

    Google Scholar 

  34. Huisgen R (1968) J Org Chem 33:2291

    Google Scholar 

  35. Atherton JH, Fields R (1968) J Chem Soc C 1507

    Google Scholar 

  36. Barlow MG, Hazseldine RN, Morton WD (1969) Chem Commun 931

    Google Scholar 

  37. Manecke G, Schenck HG (1968) Tetrahedron Lett 9:2061

    Google Scholar 

  38. Tabushi I, Takagi K, Okano M, Oda R (1967) Tetrahedron 23:2621

    CAS  Google Scholar 

  39. D’Yakonov IA, Repinskaya IB, Golodnikov GV (1966) Zh Org Khim 2:2256

    Google Scholar 

  40. Kadaba PK (1966) Tetrahedron 22:2453

    CAS  Google Scholar 

  41. Ledwith A, Parry D (1966) J Chem Soc B 1408

    Google Scholar 

  42. Doyle MP (1986) Chem Rev 86:919

    CAS  Google Scholar 

  43. Doyle MP, Forbes DC (1998) Chem Rev 98:911

    CAS  Google Scholar 

  44. Aggarwal VK, Ferrara M, O’Brien C, Thompson A, Jones R, Fieldhouse R (2001) J Chem Soc Perk T 1 1635

    Google Scholar 

  45. Aggarwal VK, Alonso E, Fang G, Ferrara M, Hynd G, Porcelloni M (2001) Angew Chem Int Ed 40:1433

    CAS  Google Scholar 

  46. Aggarwal VK, Alonso E, Bae I, Hynd G, Lydon KM, Palmer MJ, Patel M, Porcelloni M, Richardson J, Stenson RA, Studley JR, Vasse J, Winn CL (2003) J Am Chem Soc 125:10926

    CAS  Google Scholar 

  47. Acevedo O, Ross B, Andrews RS, Springer R, Cook PD (1995) Apparatus and processes for the large scale generation and transfer of diazomethane (Isis Pharmaceuticals). US Patent 549243

    Google Scholar 

  48. Archibald TG, Huang DS, Pratton MH, Barnard JC (1998) Large scale batch process for diazomethane (Aerojet General Corporation). US Patent 5,817,778

    Google Scholar 

  49. Archibald TG, Barnard JC, Harlan RF (1998) Continuous process for diazomethane from an N-methyl-N-nitrosoamine and from methylurea through N-methyl-N-nitrosourea (Aerojet General Corporation). US Patent 5,854,405

    Google Scholar 

  50. Maas G (2009) Angew Chem Int Ed 48:8186

    CAS  Google Scholar 

  51. Myers EL, Raines RT (2009) Angew Chem Int Ed 48:2359

    CAS  Google Scholar 

  52. Holton TL, Shechter H (1995) J Org Chem 60:4725

    CAS  Google Scholar 

  53. McGuiness M, Shechter H (2002) Tetrahedron Lett 43:8425

    CAS  Google Scholar 

  54. Javed MI, Brewer M (2007) Org Lett 9:1789

    CAS  Google Scholar 

  55. Wender PA, Handy ST, Wright DL (1997) Chem Ind 765

    Google Scholar 

  56. Buchner E, Curtius T (1885) Ber Dtsch Chem Ges 18:2377

    Google Scholar 

  57. Pechmann HV, Frobenius L (1895) Ber Dtsch Chem Ges 28:170

    Google Scholar 

  58. Meyer H (1905) Monatsh Chem 26:1295

    CAS  Google Scholar 

  59. Schlotterbeck F (1907) Ber Dtsch Chem Ges 40:479

    CAS  Google Scholar 

  60. Schlotterbeck F (1909) Ber Dtsch Chem Ges 42:2559

    CAS  Google Scholar 

  61. Eistert B (1948) Newer methods of preparative organic chemistry. Interscience, New York, p 521, English edition

    Google Scholar 

  62. Meerwein H, Burneleit W (1928) Ber Dtsch Chem Ges 61:1840

    Google Scholar 

  63. Meerwein H (1933) Verfahren zur Umsetzung Organischer Verbindungen mit Diazomethan. German Patent 579,309

    Google Scholar 

  64. Smith PAS, Baer DR (1960) Org Reactions 11:157

    CAS  Google Scholar 

  65. Woodward RB, Gosteli J, Ernest I, Friary RJ, Nestler G, Raman H, Sitrin R, Suter C, Whitesell JK (1973) J Am Chem Soc 95:6853

    CAS  Google Scholar 

  66. Mosettig E, Burger A (1930) J Am Chem Soc 52:3456

    CAS  Google Scholar 

  67. Heller G (1919) Ber Dtsch Chem Ges 52:741

    Google Scholar 

  68. Heller G (1926) Ber Dtsch Chem Ges 59:704

    Google Scholar 

  69. Giraitis AP, Bullock JL (1937) J Am Chem Soc 59:951

    CAS  Google Scholar 

  70. Kohler EP, Tishler M, Potter H, Thompson HT (1939) J Am Chem Soc 61:1057

    CAS  Google Scholar 

  71. Adamson DW, Kenner J (1939) J Chem Soc 181

    Google Scholar 

  72. Gutsche CD (1949) J Am Chem Soc 71:3513

    CAS  Google Scholar 

  73. Gutsche CD, Strohmayer HF, Chang JM (1958) J Org Chem 23:1

    CAS  Google Scholar 

  74. Hammett LP (1937) J Am Chem Soc 59:96

    CAS  Google Scholar 

  75. Goodman RM, Kishi Y (1998) J Am Chem Soc 120:9392

    CAS  Google Scholar 

  76. Nakamura K, Osamura Y (1993) J Am Chem Soc 115:9112

    CAS  Google Scholar 

  77. Berson JA, Suzuki S (1959) J Am Chem Soc 81:4088

    CAS  Google Scholar 

  78. Gutsche CD, Johnson HE (1955) J Am Chem Soc 77:109

    CAS  Google Scholar 

  79. Gutsche CD, Johnson HE (1955) Org Synth 35:91

    CAS  Google Scholar 

  80. Gutsche CD, Jason EF (1956) J Am Chem Soc 78:1184

    CAS  Google Scholar 

  81. Greene AE, Depres JP (1979) J Am Chem Soc 101:4003

    CAS  Google Scholar 

  82. Jaz J, Davreux JP (1965) Bull Chim Soc Belg 74:370

    CAS  Google Scholar 

  83. Roberts JD, Gorham WF (1952) J Am Chem Soc 74:2278

    CAS  Google Scholar 

  84. Reeder LM, Hegedus LS (1999) J Org Chem 64:3306

    CAS  Google Scholar 

  85. Black TH (1983) Aldrichim Acta 16:3

    CAS  Google Scholar 

  86. Sammakia T (1995) In: Paquette LA (ed) Encyclopedia of reagents for organic synthesis. Wiley, Chichester, UK, p 1512

    Google Scholar 

  87. Bamford WR, Stevens TS (1952) J Chem Soc 4735

    Google Scholar 

  88. Müller E, Bauer M, Rundel W (1960) Tetrahedron Lett 1:30

    Google Scholar 

  89. House HO, Grubbs EJ, Gannon WF (1960) J Am Chem Soc 82:4099

    CAS  Google Scholar 

  90. Goubeau J, Rohwedder KH (1957) Liebigs Ann Chem 604:168

    CAS  Google Scholar 

  91. Tai WT, Warnhoff EW (1964) Can J Chem 42:1333

    CAS  Google Scholar 

  92. Hashimoto N, Aoyama T, Shioiri T (1980) Tetrahedron Lett 21:4619

    CAS  Google Scholar 

  93. Brook AG (1974) Acc Chem Res 7:77

    CAS  Google Scholar 

  94. Moser WH (2001) Tetrahedron 57:2065

    CAS  Google Scholar 

  95. Brook AG, Limburg WW, MacRae DM, Fieldhouse SA (1967) J Am Chem Soc 89:704

    CAS  Google Scholar 

  96. Corey EJ, Rücker C (1984) Tetrahedron Lett 25:4345

    CAS  Google Scholar 

  97. Shioiri T, Aoyama T, Mori S (1990) Org Synth 68:1

    CAS  Google Scholar 

  98. Kemsley JN (2011) Chem Eng News 89:15

    Google Scholar 

  99. Maruoka K, Concepcion AB, Yamamoto H (1994) Synthesis 1283

    Google Scholar 

  100. Maruoka K, Concepcion AB, Yamamoto H (1994) J Org Chem 59:4725

    CAS  Google Scholar 

  101. Müller E, Bauer M (1962) Liebigs Ann Chem 654:92

    Google Scholar 

  102. Hoberg H (1966) Angew Chem Int Ed 5:513

    CAS  Google Scholar 

  103. Youn J-H, Lee J, Cha JK (2001) Org Lett 3:2935

    CAS  Google Scholar 

  104. Johnson WS, Neeman M, Birkeland SP, Fedoruk NA (1962) J Am Chem Soc 84:989

    CAS  Google Scholar 

  105. Moebius DC, Kingsbury JS (2009) J Am Chem Soc 131:878

    CAS  Google Scholar 

  106. Moebius DC (2011) Ph.D. Dissertation, Boston College, Chestnut Hill

    Google Scholar 

  107. Evans DA, Fandrick KR, Song H-J, Scheidt KA, Xu R (2007) J Am Chem Soc 129:10029

    CAS  Google Scholar 

  108. Wu J (2005) Ph.D. Dissertation, Harvard University, Cambridge

    Google Scholar 

  109. Shankar BKR, Shechter H (1982) Tetrahedron Lett 23:2277

    CAS  Google Scholar 

  110. Rendina VL, Kaplan HZ, Kingsbury JS (2012) Synthesis 686

    Google Scholar 

  111. Dabrowski JA, Moebius DC, Wommack AJ, Kornahrens AF, Kingsbury JS (2010) Org Lett 12:3598

    CAS  Google Scholar 

  112. Seyferth D, Dow AW, Menzel H, Flood TC (1968) J Am Chem Soc 90:1080

    CAS  Google Scholar 

  113. Hashimoto N, Aoyama T, Shioiri T (1982) Chem Pharm Bull 30:119

    CAS  Google Scholar 

  114. Shioiri T, Aoyama T, Mori S (1990) Org Synth 68:1

    CAS  Google Scholar 

  115. Fleming I, Sanderson PEJ (1987) Tetrahedron Lett 28:4229

    CAS  Google Scholar 

  116. Wommack AJ, Moebius DC, Travis AL, Kingsbury JS (2009) Org Lett 11:3202

    CAS  Google Scholar 

  117. Wommack AJ, Kingsbury JS (2013) J Org Chem 78:10573–10587

    CAS  Google Scholar 

  118. Rendina VL, Moebius DC, Kingsbury JS (2011) Org Lett 13:2004

    CAS  Google Scholar 

  119. Arndt F (1935) Org Synth 15:3

    Google Scholar 

  120. Harman WW, Phillips R (1933) Org Synth 13:84

    Google Scholar 

  121. de Boer TJ, Backer HJ (1956) Org Synth 36:16

    Google Scholar 

  122. Lieser T, Beck G (1950) Berichte 83:137

    CAS  Google Scholar 

  123. Hart H, Brewbaker JL (1969) J Am Chem Soc 91:706

    CAS  Google Scholar 

  124. Wiseman JR, Chan H (1970) J Am Chem Soc 92:4749

    CAS  Google Scholar 

  125. Miyashita M, Yoshikoshi A (1974) J Am Chem Soc 96:1917

    CAS  Google Scholar 

  126. Thomas RC, Fritzen EL (1988) J Antibiot 41:1445

    CAS  Google Scholar 

  127. Fulton J, Aggarwal VK, de Vincente J (2005) Eur J Org Chem 1479

    Google Scholar 

  128. Aggarwal VK, Ford JG, Thompson A, Jones RVH, Standen MCH (1996) J Am Chem Soc 118:7004

    CAS  Google Scholar 

  129. Aggarwal VK (1998) Synlett 329

    Google Scholar 

  130. Aggarwal VK, Vasse J (2003) Org Lett 5:3987

    CAS  Google Scholar 

  131. Adams LA, Aggarwal VK, Bonnert RV, Bressel B, Cox RJ, Shepherd J, de Vincente J, Walter M, Whittingham WG, Winn CL (2003) J Org Chem 68:9433

    CAS  Google Scholar 

  132. Aggarwal VK, de Vincente J, Bonnert RV (2001) Org Lett 3:2785

    CAS  Google Scholar 

  133. Angle SR, Neitzel ML (2000) J Org Chem 65:6458

    CAS  Google Scholar 

  134. Aggarwal VK, de Vincente J, Pelotier B, Holmes IP, Bonnert RV (2000) Tetrahedron Lett 41:10327

    CAS  Google Scholar 

  135. Trost BM, Higuchi RI (1996) J Am Chem Soc 118:10094

    CAS  Google Scholar 

  136. Zhang J, Chan P, Che C (2003) Tetrahedron Lett 44:8733

    CAS  Google Scholar 

  137. Hu W, Timmons DJ, Doyle MP (2002) Org Lett 4:901

    CAS  Google Scholar 

  138. Pross A, Sternhill S (1970) Aust J Chem 23:989

    CAS  Google Scholar 

  139. Overberger CG, Anselme J (1964) J Org Chem 29:1188

    CAS  Google Scholar 

  140. Abelt CJ, Pleier JM (1989) J Am Chem Soc 111:1795

    CAS  Google Scholar 

  141. Smith LI, Howard KL (1944) Org Synth 24:53

    CAS  Google Scholar 

  142. Kotali A (2002) Curr Org Chem 6:965

    CAS  Google Scholar 

  143. Gale D, Middleton WJ, Krespan C (1966) J Am Chem Soc 88:3617

    Google Scholar 

  144. Ciganek E (1970) J Org Chem 35:862

    Google Scholar 

  145. Bernard RE (1967) Ph.D. Dissertation, The Ohio State University, Columbus

    Google Scholar 

  146. McBee ET, Sienkowski KJ (1973) J Org Chem 38:1340

    CAS  Google Scholar 

  147. Ciganek E (1965) J Am Chem Soc 87:652

    CAS  Google Scholar 

  148. Creary X (1986) Org Synth 64:207

    CAS  Google Scholar 

  149. McGuiness M, Shechter H (1990) Tetrahedron Lett 31:4987

    CAS  Google Scholar 

  150. Barton DHR, O’Brien RE, Sternhell S (1962) J Chem Soc 470

    Google Scholar 

  151. Adamson J, Bywood R, Eastlick DT, Gallagher G, Walker D, Wilson EM (1975) J Chem Soc Perk T 1:2030

    Google Scholar 

  152. Gallagher G (1978) US Patent 4,083,837

    Google Scholar 

  153. Eastlick DT (1978) US Patent 4,092,306

    Google Scholar 

  154. ter Wiel MKJ, Vicario J, Davey SG, Meetsma A, Feringa BL (2005) Org Biomol Chem 3:28

    Google Scholar 

  155. Nicolaou KC, Mathison CJN, Montagnon T (2004) J Am Chem Soc 126:5192

    CAS  Google Scholar 

  156. Weiss R, Seubert J (1994) Angew Chem Int Ed 33:891

    Google Scholar 

  157. Lapatsanis L, Milias G, Paraskewas S (1985) Synthesis 513

    Google Scholar 

  158. Furrow ME, Myers AG (2004) J Am Chem Soc 126:5436

    CAS  Google Scholar 

  159. Brewer M (2006) Tetrahedron Lett 47:7731

    CAS  Google Scholar 

  160. Justo de Pomar JC, Soderquist JA (2000) Tetrahedron Lett 41:3285

    Google Scholar 

  161. Javed MI, Brewer M (2008) Org Synth 85:189

    CAS  Google Scholar 

  162. Gassman PG, Greenlee WJ (1973) Org Synth 53:38

    CAS  Google Scholar 

  163. Rendina VL, Kingsbury JS (2012) J Org Chem 77:1181

    CAS  Google Scholar 

  164. Curtin DY, Gerber SM (1952) J Am Chem Soc 74:4052

    CAS  Google Scholar 

  165. Köpke T, Zaleski JM (2008) Anticancer Agents Med Chem 8:292

    Google Scholar 

  166. Lei X, Porco JA (2006) J Am Chem Soc 128:14790

    CAS  Google Scholar 

  167. Nicolaou KC, Li H, Nold AL, Pappo D, Lenzen A (2007) J Am Chem Soc 129:10356

    CAS  Google Scholar 

  168. Woo CM, Lu L, Gholap SL, Smith DR, Herzon SB (2010) J Am Chem Soc 132:2540

    CAS  Google Scholar 

  169. Herzon SB, Lu L, Woo CM, Gholap SL (2011) J Am Chem Soc 133:7260

    CAS  Google Scholar 

  170. Buchner E, Curtius T (1885) Ber Deut Bot Ges 18:2371

    Google Scholar 

  171. Staudinger H, Gaule A (1916) Ber Deut Bot Ges 49:1951

    CAS  Google Scholar 

  172. Nomura K, Iida T, Hori K, Yoshi E (1994) J Org Chem 59:488

    CAS  Google Scholar 

  173. Mahmood S, Hossain M (1998) J Org Chem 59:488

    Google Scholar 

  174. Kanemasa S, Kanai T, Araki T, Wada E (1999) Tetrahedron Lett 40:5055

    CAS  Google Scholar 

  175. Hashimoto T, Naganawa Y, Kano T, Maruoka K (2008) J Am Chem Soc 130:2434

    CAS  Google Scholar 

  176. Hashimoto T, Naganawa Y, Kano T, Maruoka K (2007) Chem Commun 5143

    Google Scholar 

  177. Hashimoto T, Miyamoto H, Naganawa Y, Maruoka K (2009) J Am Chem Soc 131:11280

    CAS  Google Scholar 

  178. Li W, Wang J, Hu X, Shen K, Wang W, Chu Y, Lin L, Liu X, Feng X (2010) J Am Chem Soc 132:8532

    CAS  Google Scholar 

  179. Gutsche CD, Hillman M (1954) J Am Chem Soc 76:2236

    CAS  Google Scholar 

  180. Kharasch MS, Rudy T, Nudenberg W, Büchi G (1953) J Org Chem 18:1030

    CAS  Google Scholar 

  181. Mock WL, Hartman ME (1970) J Am Chem Soc 92:5767

    CAS  Google Scholar 

  182. Mock WL, Hartman ME (1977) J Org Chem 42:459

    Google Scholar 

  183. Mock WL, Hartman ME (1977) J Org Chem 42:466

    CAS  Google Scholar 

  184. Liu HJ, Ogina T (1973) Tetrahedron Lett 14:4937

    Google Scholar 

  185. Liu HJ, Majumdar SP (1975) Synthetic Commun 5:125

    CAS  Google Scholar 

  186. Marchand AP, Annapurna P, Reddy SP, Watson WH, Nagl A (1989) J Org Chem 54:187

    CAS  Google Scholar 

  187. Dave V, Warnhoff EW (1983) J Org Chem 48:2590

    CAS  Google Scholar 

  188. Kantorowski EJ, Kurth MJ (2000) Tetrahedron 56:4317

    CAS  Google Scholar 

  189. Hashimoto T, Naganawa Y, Maruoka K (2009) J Am Chem Soc 131:6614

    CAS  Google Scholar 

  190. Nagao Y, Goto M, Ochiai M, Shiro M (1990) Chem Lett 19:1503

    Google Scholar 

  191. Baghdasarian G, Woerpel KA (2006) J Org Chem 71:6851

    CAS  Google Scholar 

  192. Hashimoto T, Naganawa Y, Maruoka K (2011) J Am Chem Soc 133:8834

    CAS  Google Scholar 

  193. Evans DA, Sweeney ZK, Rovis T, Tedrow JS (2001) J Am Chem Soc 123:12095

    CAS  Google Scholar 

  194. Evans DA, Scheidt KA, Fandrick KR, Lam HW, Wu J (2003) J Am Chem Soc 125:10780

    CAS  Google Scholar 

  195. Liu Y, Shang D, Zhou X, Liu X, Feng X (2009) Chem Eur J 15:2055

    CAS  Google Scholar 

  196. Ishikawa S, Hamada T, Manabe K, Kobayashi S (2004) J Am Chem Soc 126:12236

    CAS  Google Scholar 

  197. Bellemin-Laponnaz S, Gade LH (2002) Chem Commun 1286

    Google Scholar 

  198. Gade LH, Bellemin-Laponnaz S (2008) Chem Eur J 14:4142

    CAS  Google Scholar 

  199. Tee OS (1969) J Am Chem Soc 91:7144

    CAS  Google Scholar 

  200. Watkins SM, Reich A, Fleming LE, Hammond R (2008) Mar Drugs 6:431

    CAS  Google Scholar 

  201. Nicolaou KC, Yang Z, Shi G, Gunzner JL, Agrios KA, Gärtner P (1998) Nature 392:264

    CAS  Google Scholar 

  202. Mori Y, Yaegashi K, Furukawa H (1997) Tetrahedron 53:12917

    CAS  Google Scholar 

  203. Mori Y, Yaegashi K, Furukawa H (1997) J Am Chem Soc 119:4557

    CAS  Google Scholar 

  204. Mori Y, Nogami K, Hayashi H, Noyori R (2003) J Org Chem 68:9050

    CAS  Google Scholar 

  205. Pazos G, Pérez M, Gándara Z, Gómez G, Fall Y (2009) Tetrahedron Lett 50:5285

    CAS  Google Scholar 

  206. Seto H, Fujioka S, Koshino H, Hayasaka H, Shimizu T, Yoshida S, Watanabe T (1999) Tetrahedron Lett 40:2359

    CAS  Google Scholar 

  207. Smalley TL (2004) Synthetic Commun 34:1973

    CAS  Google Scholar 

  208. Drège E, Morgant G, Desmaële D (2005) Tetrahedron Lett 46:7263

    Google Scholar 

  209. Drège E, Tominiaux C, Morgant G, Desmaële D (2006) Eur J Org Chem 4825

    Google Scholar 

  210. Snyder SA, Wespe DA, von Hof JM (2011) J Am Chem Soc 133:8850

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason S. Kingsbury .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Moebius, D.C., Rendina, V.L., Kingsbury, J.S. (2014). Catalysis of Diazoalkane–Carbonyl Homologation. How New Developments in Hydrazone Oxidation Enable the Carbon Insertion Strategy for Synthesis. In: Dong, G. (eds) C-C Bond Activation. Topics in Current Chemistry, vol 346. Springer, Berlin, Heidelberg. https://doi.org/10.1007/128_2013_521

Download citation

Publish with us

Policies and ethics