Skip to main content

Extracellular Activities of Aminoacyl-tRNA Synthetases: New Mediators for Cell–Cell Communication

  • Chapter
  • First Online:
Aminoacyl-tRNA Synthetases in Biology and Medicine

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 344))

Abstract

Over the last decade, many reports have discussed aminoacyl-tRNA synthetases (ARSs) in extracellular space. Now that so many of them are known to be secreted with distinct activities in the broad range of target cells including endothelial, various immune cells, and fibroblasts, they need to be classified as a new family of extracellular signal mediators. In this chapter the identity of the secreted ARSs, receptors, and their physiological and pathological implications will be described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Foster D, Parrish-Novak J, Fox B, Xu W (2004) Cytokine-receptor pairing: accelerating discovery of cytokine function. Nat Rev Drug Discov 3(2):160–170

    CAS  Google Scholar 

  2. Kolls JK, McCray PB Jr, Chan YR (2008) Cytokine-mediated regulation of antimicrobial proteins. Nat Rev Immunol 8:829–835

    CAS  Google Scholar 

  3. Sims JE, Smith DE (2010) The IL-1 family: regulators of immunity. Nat Rev Immunol 10:89–102

    CAS  Google Scholar 

  4. Tracey KJ (2009) Reflex control of immunity. Nat Rev Immunol 9:418–428

    CAS  Google Scholar 

  5. Wang CY, Mayo MW, Baldwin AS Jr (1996) TNF- and cancer therapy-induced apoptosis: potentiation by inhibition of NF-kappaB. Science 274:784–787

    CAS  Google Scholar 

  6. Karin M, Cao Y, Greten FR, Li ZW (2002) NF-kappaB in cancer: from innocent bystander to major culprit. Nat Rev Cancer 2:301–310

    CAS  Google Scholar 

  7. Coussens LM, Werb Z (2002) Inflammation and cancer. Nature 420:860–867

    CAS  Google Scholar 

  8. Gutterman JU (1994) Cytokine therapeutics: lessons from interferon alpha. Proc Natl Acad Sci USA 91:1198–1205

    CAS  Google Scholar 

  9. Dvorak HF (2002) Vascular permeability factor/vascular endothelial growth factor: a critical cytokine in tumor angiogenesis and a potential target for diagnosis and therapy. J Clin Oncol 20:4368–4380

    CAS  Google Scholar 

  10. Hanada T, Yoshimura A (2002) Regulation of cytokine signaling and inflammation. Cytokine Growth Factor Rev 13:413–421

    CAS  Google Scholar 

  11. Mantovani A, Bussolino F, Dejana E (1992) Cytokine regulation of endothelial cell function. FASEB J 6:2591–2599

    CAS  Google Scholar 

  12. Gardella S, Andrei C, Ferrera D, Lotti LV, Torrisi MR, Bianchi ME, Rubartelli A (2002) The nuclear protein HMGB1 is secreted by monocytes via a non-classical, vesicle-mediated secretory pathway. EMBO Rep 3:995–1001

    CAS  Google Scholar 

  13. Srivastava P (2002) Roles of heat-shock proteins in innate and adaptive immunity. Nat Rev Immunol 2:185–194

    CAS  Google Scholar 

  14. Park SG, Ewalt KL, Kim S (2005) Functional expansion of aminoacyl-tRNA synthetases and their interacting factors: new perspectives on housekeepers. Trends Biochem Sci 30:569–574

    CAS  Google Scholar 

  15. Ewalt KL, Schimmel P (2002) Activation of angiogenic signaling pathways by two human tRNA synthetases. Biochemistry 41:13344–13349

    CAS  Google Scholar 

  16. Guo M, Yang XL, Schimmel P (2010) New functions of aminoacyl-tRNA synthetases beyond translation. Nat Rev Mol Cell Biol 11:668–674

    CAS  Google Scholar 

  17. Park SG, Schimmel P, Kim S (2008) Aminoacyl tRNA synthetases and their connections to disease. Proc Natl Acad Sci USA 105:11043–11049

    CAS  Google Scholar 

  18. Mun J, Kim YH, Yu J, Bae J, Noh DY, Yu MH, Lee C (2010) A proteomic approach based on multiple parallel separation for the unambiguous identification of an antibody cognate antigen. Electrophoresis 31:3428–3436

    CAS  Google Scholar 

  19. Hirakata M, Suwa A, Nagai S, Kron MA, Trieu EP, Mimori T, Akizuki M, Targoff IN (1999) Anti-KS: identification of autoantibodies to asparaginyl-transfer RNA synthetase associated with interstitial lung disease. J Immunol 162:2315–2320

    CAS  Google Scholar 

  20. Mammen AL (2011) Autoimmune myopathies: autoantibodies, phenotypes and pathogenesis. Nat Rev Neurol 7:343–354

    CAS  Google Scholar 

  21. Yang XJ (2005) Multisite protein modification and intramolecular signaling. Oncogene 24:1653–1662

    CAS  Google Scholar 

  22. Glomset JA, Farnsworth CC (1994) Role of protein modification reactions in programming interactions between ras-related GTPases and cell membranes. Annu Rev Cell Biol 10:181–205

    CAS  Google Scholar 

  23. Wakasugi K, Slike BM, Hood J, Otani A, Ewalt KL, Friedlander M, Cheresh DA, Schimmel P (2002) A human aminoacyl-tRNA synthetase as a regulator of angiogenesis. Proc Natl Acad Sci USA 99:173–177

    CAS  Google Scholar 

  24. Wakasugi K, Schimmel P (1999) Two distinct cytokines released from a human aminoacyl-tRNA synthetase. Science 284:147–151

    CAS  Google Scholar 

  25. van Horssen R, Eggermont AM, ten Hagen TL (2006) Endothelial monocyte-activating polypeptide-II and its functions in (patho)physiological processes. Cytokine Growth Factor Rev 17:339–348

    Google Scholar 

  26. Park MC, Kang T, Jin D, Han JM, Kim SB, Park YJ, Cho K, Park YW, Guo M, He W, Yang XL, Schimmel P, Kim S (2012) Secreted human glycyl-tRNA synthetase implicated in defense against ERK-activated tumorigenesis. Proc Natl Acad Sci USA 109:E640–E647

    CAS  Google Scholar 

  27. Park SG, Kim HJ, Min YH, Choi EC, Shin YK, Park BJ, Lee SW, Kim S (2005) Human lysyl-tRNA synthetase is secreted to trigger proinflammatory response. Proc Natl Acad Sci USA 102:6356–6361

    CAS  Google Scholar 

  28. Howard OM, Dong HF, Yang D, Raben N, Nagaraju K, Rosen A, Casciola-Rosen L, Hartlein M, Kron M, Yang D, Yiadom K, Dwivedi S, Plotz PH, Oppenheim JJ (2002) Histidyl-tRNA synthetase and asparaginyl-tRNA synthetase, autoantigens in myositis, activate chemokine receptors on T lymphocytes and immature dendritic cells. J Exp Med 196:781–791

    CAS  Google Scholar 

  29. Park SG, Kang YS, Kim JY, Lee CS, Ko YG, Lee WJ, Lee KU, Yeom YI, Kim S (2006) Hormonal activity of AIMP1/p43 for glucose homeostasis. Proc Natl Acad Sci USA 103:14913–14918

    CAS  Google Scholar 

  30. Deane JA, Fruman DA (2004) Phosphoinositide 3-kinase: diverse roles in immune cell activation. Annu Rev Immunol 22:563–598

    CAS  Google Scholar 

  31. Inoki K, Li Y, Zhu T, Wu J, Guan KL (2002) TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol 4:648–657

    CAS  Google Scholar 

  32. Martinon F, Mayor A, Tschopp J (2009) The inflammasomes: guardians of the body. Annu Rev Immunol 27:229–265

    CAS  Google Scholar 

  33. van de Veerdonk FL, Netea MG, Dinarello CA, Joosten LA (2011) Inflammasome activation and IL-1beta and IL-18 processing during infection. Trends Immunol 32:110–116

    Google Scholar 

  34. Tolstrup AB, Bejder A, Fleckner J, Justesen J (1995) Transcriptional regulation of the interferon-gamma-inducible tryptophanyl-tRNA synthetase includes alternative splicing. J Biol Chem 270:397–403

    CAS  Google Scholar 

  35. Turpaev KT, Zakhariev VM, Sokolova IV, Narovlyansky AN, Amchenkova AM, Justesen J, Frolova LY (1996) Alternative processing of the tryptophanyl-tRNA synthetase mRNA from interferon-treated human cells. Eur J Biochem 240:732–737

    CAS  Google Scholar 

  36. Kaplan G, Luster AD, Hancock G, Cohn ZA (1987) The expression of a gamma interferon-induced protein (IP-10) in delayed immune responses in human skin. J Exp Med 166:1098–1108

    CAS  Google Scholar 

  37. Farber JM (1993) HuMig: a new human member of the chemokine family of cytokines. Biochem Biophys Res Commun 192:223–230

    CAS  Google Scholar 

  38. Shaw AC, Rossel Larsen M, Roepstorff P, Justesen J, Christiansen G, Birkelund S (1999) Mapping and identification of interferon gamma-regulated HeLa cell proteins separated by immobilized pH gradient two-dimensional gel electrophoresis. Electrophoresis 20:984–993

    CAS  Google Scholar 

  39. Liu J, Shue E, Ewalt KL, Schimmel P (2004) A new gamma-interferon-inducible promoter and splice variants of an anti-angiogenic human tRNA synthetase. Nucleic Acids Res 32:719–727

    CAS  Google Scholar 

  40. Fleckner J, Martensen PM, Tolstrup AB, Kjeldgaard NO, Justesen J (1995) Differential regulation of the human, interferon inducible tryptophanyl-tRNA synthetase by various cytokines in cell lines. Cytokine 7:70–77

    CAS  Google Scholar 

  41. Otani A, Slike BM, Dorrell MI, Hood J, Kinder K, Ewalt KL, Cheresh D, Schimmel P, Friedlander M (2002) A fragment of human TrpRS as a potent antagonist of ocular angiogenesis. Proc Natl Acad Sci USA 99:178–183

    CAS  Google Scholar 

  42. Kapoor M, Zhou Q, Otero F, Myers CA, Bates A, Belani R, Liu J, Luo JK, Tzima E, Zhang DE, Yang XL, Schimmel P (2008) Evidence for annexin II-S100A10 complex and plasmin in mobilization of cytokine activity of human TrpRS. J Biol Chem 283:2070–2077

    CAS  Google Scholar 

  43. Zobiack N, Rescher U, Ludwig C, Zeuschner D, Gerke V (2003) The annexin 2/S100A10 complex controls the distribution of transferrin receptor-containing recycling endosomes. Mol Biol Cell 14:4896–4908

    CAS  Google Scholar 

  44. Guo M, Schimmel P, Yang XL (2010) Functional expansion of human tRNA synthetases achieved by structural inventions. FEBS Lett 584:434–442

    CAS  Google Scholar 

  45. Tzima E, Reader JS, Irani-Tehrani M, Ewalt KL, Schwartz MA, Schimmel P (2005) VE-cadherin links tRNA synthetase cytokine to anti-angiogenic function. J Biol Chem 280:2405–2408

    CAS  Google Scholar 

  46. Yang XL, Otero FJ, Skene RJ, McRee DE, Schimmel P, Ribas de Pouplana L (2003) Crystal structures that suggest late development of genetic code components for differentiating aromatic side chains. Proc Natl Acad Sci USA 100:15376–15380

    CAS  Google Scholar 

  47. Yang XL, Guo M, Kapoor M, Ewalt KL, Otero FJ, Skene RJ, McRee DE, Schimmel P (2007) Functional and crystal structure analysis of active site adaptations of a potent anti-angiogenic human tRNA synthetase. Structure 15:793–805

    CAS  Google Scholar 

  48. Zhou Q, Kapoor M, Guo M, Belani R, Xu X, Kiosses WB, Hanan M, Park C, Armour E, Do MH, Nangle LA, Schimmel P, Yang XL (2010) Orthogonal use of a human tRNA synthetase active site to achieve multifunctionality. Nat Struct Mol Biol 17:57–61

    CAS  Google Scholar 

  49. Renault L, Kerjan P, Pasqualato S, Menetrey J, Robinson JC, Kawaguchi S, Vassylyev DG, Yokoyama S, Mirande M, Cherfils J (2001) Structure of the EMAPII domain of human aminoacyl-tRNA synthetase complex reveals evolutionary dimer mimicry. EMBO J 20:570–578

    CAS  Google Scholar 

  50. Strieter RM, Polverini PJ, Kunkel SL, Arenberg DA, Burdick MD, Kasper J, Dzuiba J, Van Damme J, Walz A, Marriott D et al (1995) The functional role of the ELR motif in CXC chemokine-mediated angiogenesis. J Biol Chem 270:27348–27357

    CAS  Google Scholar 

  51. Wakasugi K, Slike BM, Hood J, Ewalt KL, Cheresh DA, Schimmel P (2002) Induction of angiogenesis by a fragment of human tyrosyl-tRNA synthetase. J Biol Chem 277:20124–20126

    CAS  Google Scholar 

  52. Cheng G, Zhang H, Yang X, Tzima E, Ewalt KL, Schimmel P, Faber JE (2008) Effect of mini-tyrosyl-tRNA synthetase on ischemic angiogenesis, leukocyte recruitment, and vascular permeability. Am J Physiol Regul Integr Comp Physiol 295:R1138–R1146

    CAS  Google Scholar 

  53. Yang XL, Skene RJ, McRee DE, Schimmel P (2002) Crystal structure of a human aminoacyl-tRNA synthetase cytokine. Proc Natl Acad Sci USA 99:15369–15374

    CAS  Google Scholar 

  54. Liu J, Yang XL, Ewalt KL, Schimmel P (2002) Mutational switching of a yeast tRNA synthetase into a mammalian-like synthetase cytokine. Biochemistry 41:14232–14237

    CAS  Google Scholar 

  55. Berger AC, Tang G, Alexander HR, Libutti SK (2000) Endothelial monocyte-activating polypeptide II, a tumor-derived cytokine that plays an important role in inflammation, apoptosis, and angiogenesis. J Immunother 23:519–527

    CAS  Google Scholar 

  56. Wakasugi K, Schimmel P (1999) Highly differentiated motifs responsible for two cytokine activities of a split human tRNA synthetase. J Biol Chem 274:23155–23159

    CAS  Google Scholar 

  57. Kleeman TA, Wei D, Simpson KL, First EA (1997) Human tyrosyl-tRNA synthetase shares amino acid sequence homology with a putative cytokine. J Biol Chem 272:14420–14425

    CAS  Google Scholar 

  58. Yang XL, Kapoor M, Otero FJ, Slike BM, Tsuruta H, Frausto R, Bates A, Ewalt KL, Cheresh DA, Schimmel P (2007) Gain-of-function mutational activation of human tRNA synthetase procytokine. Chem Biol 14:1323–1333

    CAS  Google Scholar 

  59. Targoff IN, Trieu EP, Plotz PH, Miller FW (1992) Antibodies to glycyl-transfer RNA synthetase in patients with myositis and interstitial lung disease. Arthritis Rheum 35:821–830

    CAS  Google Scholar 

  60. Targoff IN (1990) Autoantibodies to aminoacyl-transfer RNA synthetases for isoleucine and glycine. Two additional synthetases are antigenic in myositis. J Immunol 144:1737–1743

    CAS  Google Scholar 

  61. Anjum R, Blenis J (2008) The RSK family of kinases: emerging roles in cellular signalling. Nat Rev Mol Cell Biol 9:747–758

    CAS  Google Scholar 

  62. Gelpi C, Kanterewicz E, Gratacos J, Targoff IN, Rodriguez-Sanchez JL (1996) Coexistence of two antisynthetases in a patient with the antisynthetase syndrome. Arthritis Rheum 39:692–697

    CAS  Google Scholar 

  63. Meerschaert K, Remue E, De Ganck A, Staes A, Boucherie C, Gevaert K, Vandekerckhove J, Kleiman L, Gettemans J (2008) The tandem PDZ protein syntenin interacts with the aminoacyl tRNA synthetase complex in a lysyl-tRNA synthetase-dependent manner. J Proteome Res 7:4962–4973

    CAS  Google Scholar 

  64. Baietti MF, Zhang Z, Mortier E, Melchior A, Degeest G, Geeraerts A, Ivarsson Y, Depoortere F, Coomans C, Vermeiren E, Zimmermann P, David G (2012) Syndecan-syntenin-ALIX regulates the biogenesis of exosomes. Nat Cell Biol 14:677–685

    CAS  Google Scholar 

  65. Mantovani A, Allavena P, Sica A, Balkwill F (2008) Cancer-related inflammation. Nature 454:436–444

    CAS  Google Scholar 

  66. Mumm JB, Oft M (2008) Cytokine-based transformation of immune surveillance into tumor-promoting inflammation. Oncogene 27:5913–5919

    CAS  Google Scholar 

  67. Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD (2002) Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol 3:991–998

    CAS  Google Scholar 

  68. Wong FS, Karttunen J, Dumont C, Wen L, Visintin I, Pilip IM, Shastri N, Pamer EG, Janeway CA Jr (1999) Identification of an MHC class I-restricted autoantigen in type 1 diabetes by screening an organ-specific cDNA library. Nat Med 5:1026–1031

    CAS  Google Scholar 

  69. Soejima M, Kang EH, Gu X, Katsumata Y, Clemens PR, Ascherman DP (2011) Role of innate immunity in a murine model of histidyl-transfer RNA synthetase (Jo-1)-mediated myositis. Arthritis Rheum 63:479–487

    CAS  Google Scholar 

  70. Raben N, Nichols R, Dohlman J, McPhie P, Sridhar V, Hyde C, Leff R, Plotz P (1994) A motif in human histidyl-tRNA synthetase which is shared among several aminoacyl-tRNA synthetases is a coiled-coil that is essential for enzymatic activity and contains the major autoantigenic epitope. J Biol Chem 269:24277–24283

    CAS  Google Scholar 

  71. Xu Z, Wei Z, Zhou JJ, Ye F, Lo WS, Wang F, Lau CF, Wu J, Nangle LA, Chiang KP, Yang XL, Zhang M, Schimmel P (2012) Internally deleted human tRNA synthetase suggests evolutionary pressure for repurposing. Structure 20:1470–1477

    CAS  Google Scholar 

  72. Kao J, Ryan J, Brett G, Chen J, Shen H, Fan YG, Godman G, Familletti PC, Wang F, Pan YC et al (1992) Endothelial monocyte-activating polypeptide II. A novel tumor-derived polypeptide that activates host-response mechanisms. J Biol Chem 267:20239–20247

    CAS  Google Scholar 

  73. Shalak V, Kaminska M, Mitnacht-Kraus R, Vandenabeele P, Clauss M, Mirande M (2001) The EMAPII cytokine is released from the mammalian multisynthetase complex after cleavage of its p43/proEMAPII component. J Biol Chem 276:23769–23776

    CAS  Google Scholar 

  74. Lee SW, Cho BH, Park SG, Kim S (2004) Aminoacyl-tRNA synthetase complexes: beyond translation. J Cell Sci 117:3725–3734

    CAS  Google Scholar 

  75. Wu PC, Alexander HR, Huang J, Hwu P, Gnant M, Berger AC, Turner E, Wilson O, Libutti SK (1999) In vivo sensitivity of human melanoma to tumor necrosis factor (TNF)-alpha is determined by tumor production of the novel cytokine endothelial-monocyte activating polypeptide II (EMAPII). Cancer Res 59:205–212

    CAS  Google Scholar 

  76. Nawroth PP, Handley DA, Esmon CT, Stern DM (1986) Interleukin 1 induces endothelial cell procoagulant while suppressing cell-surface anticoagulant activity. Proc Natl Acad Sci USA 83:3460–3464

    CAS  Google Scholar 

  77. Bevilacqua MP, Pober JS, Majeau GR, Fiers W, Cotran RS, Gimbrone MA Jr (1986) Recombinant tumor necrosis factor induces procoagulant activity in cultured human vascular endothelium: characterization and comparison with the actions of interleukin 1. Proc Natl Acad Sci USA 83:4533–4537

    CAS  Google Scholar 

  78. Berger AC, Alexander HR, Wu PC, Tang G, Gnant MF, Mixon A, Turner ES, Libutti SK (2000) Tumour necrosis factor receptor I (p55) is upregulated on endothelial cells by exposure to the tumour-derived cytokine endothelial monocyte- activating polypeptide II (EMAP-II). Cytokine 12:992–1000

    CAS  Google Scholar 

  79. Berger AC, Alexander HR, Tang G, Wu PS, Hewitt SM, Turner E, Kruger E, Figg WD, Grove A, Kohn E, Stern D, Libutti SK (2000) Endothelial monocyte activating polypeptide II induces endothelial cell apoptosis and may inhibit tumor angiogenesis. Microvasc Res 60:70–80

    CAS  Google Scholar 

  80. Gnant MF, Berger AC, Huang J, Puhlmann M, Wu PC, Merino MJ, Bartlett DL, Alexander HR Jr, Libutti SK (1999) Sensitization of tumor necrosis factor alpha-resistant human melanoma by tumor-specific in vivo transfer of the gene encoding endothelial monocyte-activating polypeptide II using recombinant vaccinia virus. Cancer Res 59:4668–4674

    CAS  Google Scholar 

  81. Marvin MR, Libutti SK, Kayton M, Kao J, Hayward J, Grikscheit T, Fan Y, Brett J, Weinberg A, Nowygrod R, LoGerfo P, Feind C, Hansen KS, Schwartz M, Stern D, Chabot J (1996) A novel tumor-derived mediator that sensitizes cytokine-resistant tumors to tumor necrosis factor. J Surg Res 63:248–255

    CAS  Google Scholar 

  82. Kim Y, Shin J, Li R, Cheong C, Kim K, Kim S (2000) A novel anti-tumor cytokine contains an RNA binding motif present in aminoacyl-tRNA synthetases. J Biol Chem 275:27062–27068

    CAS  Google Scholar 

  83. Park SG, Kang YS, Ahn YH, Lee SH, Kim KR, Kim KW, Koh GY, Ko YG, Kim S (2002) Dose-dependent biphasic activity of tRNA synthetase-associating factor, p43, in angiogenesis. J Biol Chem 277:45243–45248

    CAS  Google Scholar 

  84. Fidler IJ, Ellis LM (1994) The implications of angiogenesis for the biology and therapy of cancer metastasis. Cell 79:185–188

    CAS  Google Scholar 

  85. Knies UE, Behrensdorf HA, Mitchell CA, Deutsch U, Risau W, Drexler HC, Clauss M (1998) Regulation of endothelial monocyte-activating polypeptide II release by apoptosis. Proc Natl Acad Sci USA 95:12322–12327

    CAS  Google Scholar 

  86. Barnett G, Jakobsen AM, Tas M, Rice K, Carmichael J, Murray JC (2000) Prostate adenocarcinoma cells release the novel proinflammatory polypeptide EMAP-II in response to stress. Cancer Res 60:2850–2857

    CAS  Google Scholar 

  87. Behrensdorf HA, van de Craen M, Knies UE, Vandenabeele P, Clauss M (2000) The endothelial monocyte-activating polypeptide II (EMAP II) is a substrate for caspase-7. FEBS Lett 466:143–147

    CAS  Google Scholar 

  88. Kao J, Fan YG, Haehnel I, Brett J, Greenberg S, Clauss M, Kayton M, Houck K, Kisiel W, Seljelid R et al (1994) A peptide derived from the amino terminus of endothelial-monocyte-activating polypeptide II modulates mononuclear and polymorphonuclear leukocyte functions, defines an apparently novel cellular interaction site, and induces an acute inflammatory response. J Biol Chem 269:9774–9782

    CAS  Google Scholar 

  89. Kao J, Houck K, Fan Y, Haehnel I, Libutti SK, Kayton ML, Grikscheit T, Chabot J, Nowygrod R, Greenberg S et al (1994) Characterization of a novel tumor-derived cytokine. Endothelial-monocyte activating polypeptide II. J Biol Chem 269:25106–25119

    CAS  Google Scholar 

  90. Schluesener HJ, Seid K, Zhao Y, Meyermann R (1997) Localization of endothelial-monocyte-activating polypeptide II (EMAP II), a novel proinflammatory cytokine, to lesions of experimental autoimmune encephalomyelitis, neuritis and uveitis: expression by monocytes and activated microglial cells. Glia 20:365–372

    CAS  Google Scholar 

  91. Mueller CA, Schluesener HJ, Conrad S, Meyermann R, Schwab JM (2003) Lesional expression of a proinflammatory and antiangiogenic cytokine EMAP II confined to endothelium and microglia/macrophages during secondary damage following experimental traumatic brain injury. J Neuroimmunol 135:1–9

    CAS  Google Scholar 

  92. Ko YG, Park H, Kim T, Lee JW, Park SG, Seol W, Kim JE, Lee WH, Kim SH, Park JE, Kim S (2001) A cofactor of tRNA synthetase, p43, is secreted to up-regulate proinflammatory genes. J Biol Chem 276:23028–23033

    CAS  Google Scholar 

  93. Park H, Park SG, Kim J, Ko YG, Kim S (2002) Signaling pathways for TNF production induced by human aminoacyl-tRNA synthetase-associating factor, p43. Cytokine 20:148–153

    CAS  Google Scholar 

  94. Elsner J, Sach M, Knopf HP, Norgauer J, Kapp A, Schollmeyer P, Dobos GJ (1995) Synthesis and surface expression of ICAM-1 in polymorphonuclear neutrophilic leukocytes in normal subjects and during inflammatory disease. Immunobiology 193:456–464

    CAS  Google Scholar 

  95. Capodici C, Hanft S, Feoktistov M, Pillinger MH (1998) Phosphatidylinositol 3-kinase mediates chemoattractant-stimulated, CD11b/CD18-dependent cell–cell adhesion of human neutrophils: evidence for an ERK-independent pathway. J Immunol 160:1901–1909

    CAS  Google Scholar 

  96. Park H, Park SG, Lee JW, Kim T, Kim G, Ko YG, Kim S (2002) Monocyte cell adhesion induced by a human aminoacyl-tRNA synthetase-associated factor, p43: identification of the related adhesion molecules and signal pathways. J Leukoc Biol 71:223–230

    CAS  Google Scholar 

  97. Kim E, Kim SH, Kim S, Kim TS (2006) The novel cytokine p43 induces IL-12 production in macrophages via NF-kappaB activation, leading to enhanced IFN-gamma production in CD4+ T cells. J Immunol 176:256–264

    CAS  Google Scholar 

  98. Kim E, Kim SH, Kim S, Cho D, Kim TS (2008) AIMP1/p43 protein induces the maturation of bone marrow-derived dendritic cells with T helper type 1-polarizing ability. J Immunol 180:2894–2902

    CAS  Google Scholar 

  99. Kim TS, Lee BC, Kim E, Cho D, Cohen EP (2008) Gene transfer of AIMP1 and B7.1 into epitope-loaded, fibroblasts induces tumor-specific CTL immunity, and prolongs the survival period of tumor-bearing mice. Vaccine 26:5928–5934

    CAS  Google Scholar 

  100. Lee BC, O’Sullivan I, Kim E, Park SG, Hwang SY, Cho D, Kim TS (2009) A DNA adjuvant encoding a fusion protein between anti-CD3 single-chain Fv and AIMP1 enhances T helper type 1 cell-mediated immune responses in antigen-sensitized mice. Immunology 126:84–91

    CAS  Google Scholar 

  101. Han JM, Myung H, Kim S (2010) Antitumor activity and pharmacokinetic properties of ARS-interacting multi-functional protein 1 (AIMP1/p43). Cancer Lett 287:157–164

    CAS  Google Scholar 

  102. Diegelmann RF, Evans MC (2004) Wound healing: an overview of acute, fibrotic and delayed healing. Front Biosci 9:283–289

    CAS  Google Scholar 

  103. Shaw TJ, Martin P (2009) Wound repair at a glance. J Cell Sci 122:3209–3213

    CAS  Google Scholar 

  104. Han JM, Park SG, Lee Y, Kim S (2006) Structural separation of different extracellular activities in aminoacyl-tRNA synthetase-interacting multi-functional protein, p43/AIMP1. Biochem Biophys Res Commun 342:113–118

    CAS  Google Scholar 

  105. Park SG, Shin H, Shin YK, Lee Y, Choi EC, Park BJ, Kim S (2005) The novel cytokine p43 stimulates dermal fibroblast proliferation and wound repair. Am J Pathol 166:387–398

    CAS  Google Scholar 

  106. Ihle JN, Kerr IM (1995) Jaks and stats in signaling by the cytokine receptor superfamily. Trends Genet 11:69–74

    CAS  Google Scholar 

  107. Kotenko SV, Pestka S (2000) Jak-Stat signal transduction pathway through the eyes of cytokine class II receptor complexes. Oncogene 19:2557–2565

    CAS  Google Scholar 

  108. Bazan JF (1990) Structural design and molecular evolution of a cytokine receptor superfamily. Proc Natl Acad Sci USA 87:6934–6938

    CAS  Google Scholar 

  109. Takeichi M (1991) Cadherin cell adhesion receptors as a morphogenetic regulator. Science 251:1451–1455

    CAS  Google Scholar 

  110. Giancotti FG, Ruoslahti E (1999) Integrin signaling. Science 285:1028–1032

    CAS  Google Scholar 

  111. Schwarz MA, Zheng H, Liu J, Corbett S, Schwarz RE (2005) Endothelial-monocyte activating polypeptide II alters fibronectin based endothelial cell adhesion and matrix assembly via alpha5 beta1 integrin. Exp Cell Res 311:229–239

    CAS  Google Scholar 

  112. Carmeliet P, Lampugnani MG, Moons L, Breviario F, Compernolle V, Bono F, Balconi G, Spagnuolo R, Oosthuyse B, Dewerchin M, Zanetti A, Angellilo A, Mattot V, Nuyens D, Lutgens E, Clotman F, de Ruiter MC, Gittenberger-de Groot A, Poelmann R, Lupu F, Herbert JM, Collen D, Dejana E (1999) Targeted deficiency or cytosolic truncation of the VE-cadherin gene in mice impairs VEGF-mediated endothelial survival and angiogenesis. Cell 98:147–157

    CAS  Google Scholar 

  113. Patel SD, Ciatto C, Chen CP, Bahna F, Rajebhosale M, Arkus N, Schieren I, Jessell TM, Honig B, Price SR, Shapiro L (2006) Type II cadherin ectodomain structures: implications for classical cadherin specificity. Cell 124:1255–1268

    CAS  Google Scholar 

  114. Shimoyama Y, Gotoh M, Terasaki T, Kitajima M, Hirohashi S (1995) Isolation and sequence analysis of human cadherin-6 complementary DNA for the full coding sequence and its expression in human carcinoma cells. Cancer Res 55:2206–2211

    CAS  Google Scholar 

  115. Osterhout JA, Josten N, Yamada J, Pan F, Wu SW, Nguyen PL, Panagiotakos G, Inoue YU, Egusa SF, Volgyi B, Inoue T, Bloomfield SA, Barres BA, Berson DM, Feldheim DA, Huberman AD (2011) Cadherin-6 mediates axon-target matching in a non-image-forming visual circuit. Neuron 71:632–639

    CAS  Google Scholar 

  116. Crespo P, Xu N, Simonds WF, Gutkind JS (1994) Ras-dependent activation of MAP kinase pathway mediated by G-protein beta gamma subunits. Nature 369:418–420

    CAS  Google Scholar 

  117. Sauer FG, Futterer K, Pinkner JS, Dodson KW, Hultgren SJ, Waksman G (1999) Structural basis of chaperone function and pilus biogenesis. Science 285:1058–1061

    CAS  Google Scholar 

  118. Linderoth J, Jerkeman M, Cavallin-Stahl E, Kvaloy S, Torlakovic E (2003) Immunohistochemical expression of CD23 and CD40 may identify prognostically favorable subgroups of diffuse large B-cell lymphoma: a Nordic lymphoma group study. Clin Cancer Res 9:722–728

    CAS  Google Scholar 

  119. Kwon HS, Park MC, Kim DG, Cho K, Park YW, Han JM, Kim S (2012) Identification of CD23 as a functional receptor for the proinflammatory cytokine AIMP1/p43. J Cell Sci 125:4620–4629

    CAS  Google Scholar 

  120. Vo MN, Yang XL, Schimmel P (2011) Dissociating quaternary structure regulates cell-signaling functions of a secreted human tRNA synthetase. J Biol Chem 286:11563–11568

    CAS  Google Scholar 

  121. Greenberg Y, King M, Kiosses WB, Ewalt K, Yang X, Schimmel P, Reader JS, Tzima E (2008) The novel fragment of tyrosyl tRNA synthetase, mini-TyrRS, is secreted to induce an angiogenic response in endothelial cells. FASEB J 22:1597–1605

    CAS  Google Scholar 

  122. Heyman B (2000) Regulation of antibody responses via antibodies, complement, and Fc receptors. Annu Rev Immunol 18:709–737

    CAS  Google Scholar 

  123. Delespesse G, Sarfati M, Wu CY, Fournier S, Letellier M (1992) The low-affinity receptor for IgE. Immunol Rev 125:77–97

    CAS  Google Scholar 

  124. Pockley AG (2003) Heat shock proteins as regulators of the immune response. Lancet 362:469–476

    CAS  Google Scholar 

  125. Jacobs A, Worwood M (1975) Ferritin in serum. Clinical and biochemical implications. N Engl J Med 292:951–956

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Chul Park .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Son, S.H., Park, M.C., Kim, S. (2013). Extracellular Activities of Aminoacyl-tRNA Synthetases: New Mediators for Cell–Cell Communication. In: Kim, S. (eds) Aminoacyl-tRNA Synthetases in Biology and Medicine. Topics in Current Chemistry, vol 344. Springer, Dordrecht. https://doi.org/10.1007/128_2013_476

Download citation

Publish with us

Policies and ethics