Skip to main content

Association of Aminoacyl-tRNA Synthetases with Cancer

  • Chapter
  • First Online:
Aminoacyl-tRNA Synthetases in Biology and Medicine

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 344))

Abstract

Although aminoacyl-tRNA synthetases (ARSs) and ARS-interacting multi-functional proteins (AIMPs) have long been recognized as housekeeping proteins, evidence indicating that they play a key role in regulating cancer is now accumulating. In this chapter we will review the conventional and non-conventional functions of ARSs and AIMPs with respect to carcinogenesis. First, we will address how ARSs and AIMPs are altered in terms of expression, mutation, splicing, and post-translational modifications. Second, the molecular mechanisms for ARSs’ and AIMPs’ involvement in the initiation, maintenance, and progress of carcinogenesis will be covered. Finally, we will introduce the development of therapeutic approaches that target ARSs and AIMPs with the goal of treating cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70

    CAS  Google Scholar 

  2. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674. doi:10.1016/j.cell.2011.02.013

    CAS  Google Scholar 

  3. Guo M, Yang XL, Schimmel P (2010) New functions of aminoacyl-tRNA synthetases beyond translation. Nat Rev Mol Cell Biol 11(9):668–674. doi:10.1038/nrm2956

    CAS  Google Scholar 

  4. Min G, Schimmel P (2013) Essential nontranslational functions of tRNA synthetases. Nat Chem Biol 9(3):145–153. doi:10.1038/nchembio.1158

    Google Scholar 

  5. Park SG, Schimmel P, Kim S (2008) Aminoacyl tRNA synthetases and their connections to disease. Proc Natl Acad Sci USA 105(32):11043–11049. doi:10.1073/pnas.0802862105

    CAS  Google Scholar 

  6. Kim S, You S, Hwang D (2011) Aminoacyl-tRNA synthetases and tumorigenesis: more than housekeeping. Nat Rev Cancer 11(10):708–718. doi:10.1038/nrc3124

    CAS  Google Scholar 

  7. Yao P, Fox PL (2013) Aminoacyl-tRNA synthetases in medicine and disease. EMBO Mol Med. doi:10.1002/emmm.201100626

    Google Scholar 

  8. Han JM, Jeong SJ, Park MC, Kim G, Kwon NH, Kim HK, Ha SH, Ryu SH, Kim S (2012) Leucyl-tRNA synthetase is an intracellular leucine sensor for the mTORC1-signaling pathway. Cell 149(2):410–424. doi:10.1016/j.cell.2012.02.044

    CAS  Google Scholar 

  9. Ko YG, Kang YS, Kim EK, Park SG, Kim S (2000) Nucleolar localization of human methionyl-tRNA synthetase and its role in ribosomal RNA synthesis. J Cell Biol 149(3):567–574

    CAS  Google Scholar 

  10. Pacher M, Seewald MJ, Mikula M, Oehler S, Mogg M, Vinatzer U, Eger A, Schweifer N, Varecka R, Sommergruber W, Mikulits W, Schreiber M (2007) Impact of constitutive IGF1/IGF2 stimulation on the transcriptional program of human breast cancer cells. Carcinogenesis 28(1):49–59. doi:10.1093/carcin/bgl091

    CAS  Google Scholar 

  11. Chen SH, Yang W, Fan Y, Stocco G, Crews KR, Yang JJ, Paugh SW, Pui CH, Evans WE, Relling MV (2011) A genome-wide approach identifies that the aspartate metabolism pathway contributes to asparaginase sensitivity. Leukemia 25(1):66–74. doi:10.1038/leu.2010.256

    Google Scholar 

  12. Park MC, Kang T, Jin D, Han JM, Kim SB, Park YJ, Cho K, Park YW, Guo M, He W, Yang XL, Schimmel P, Kim S (2012) Secreted human glycyl-tRNA synthetase implicated in defense against ERK-activated tumorigenesis. Proc Natl Acad Sci USA 109(11):E640–E647. doi:10.1073/pnas.1200194109

    CAS  Google Scholar 

  13. Park SG, Kim HJ, Min YH, Choi EC, Shin YK, Park BJ, Lee SW, Kim S (2005) Human lysyl-tRNA synthetase is secreted to trigger proinflammatory response. Proc Natl Acad Sci USA 102(18):6356–6361. doi:10.1073/pnas.0500226102

    CAS  Google Scholar 

  14. Tzima E, Schimmel P (2006) Inhibition of tumor angiogenesis by a natural fragment of a tRNA synthetase. Trends Biochem Sci 31(1):7–10. doi:10.1016/j.tibs.2005.11.002

    CAS  Google Scholar 

  15. Ivakhno SS, Kornelyuk AI (2004) Cytokine-like activities of some aminoacyl-tRNA synthetases and auxiliary p43 cofactor of aminoacylation reaction and their role in oncogenesis. Exp Oncol 26(4):250–255

    CAS  Google Scholar 

  16. Park BJ, Kang JW, Lee SW, Choi SJ, Shin YK, Ahn YH, Choi YH, Choi D, Lee KS, Kim S (2005) The haploinsufficient tumor suppressor p18 upregulates p53 via interactions with ATM/ATR. Cell 120(2):209–221. doi:10.1016/j.cell.2004.11.054

    CAS  Google Scholar 

  17. Park BJ, Oh YS, Park SY, Choi SJ, Rudolph C, Schlegelberger B, Kim S (2006) AIMP3 haploinsufficiency disrupts oncogene-induced p53 activation and genomic stability. Cancer Res 66(14):6913–6918. doi:10.1158/0008-5472.CAN-05-3740

    CAS  Google Scholar 

  18. Kim MJ, Park BJ, Kang YS, Kim HJ, Park JH, Kang JW, Lee SW, Han JM, Lee HW, Kim S (2003) Downregulation of FUSE-binding protein and c-myc by tRNA synthetase cofactor p38 is required for lung cell differentiation. Nat Genet 34(3):330–336. doi:10.1038/ng1182

    CAS  Google Scholar 

  19. Choi JW, Kim DG, Park MC, Um JY, Han JM, Park SG, Choi EC, Kim S (2009) AIMP2 promotes TNFalpha-dependent apoptosis via ubiquitin-mediated degradation of TRAF2. J Cell Sci 122(Pt 15):2710–2715. doi:10.1242/jcs.049767

    CAS  Google Scholar 

  20. Choi JW, Um JY, Kundu JK, Surh YJ, Kim S (2009) Multidirectional tumor-suppressive activity of AIMP2/p38 and the enhanced susceptibility of AIMP2 heterozygous mice to carcinogenesis. Carcinogenesis 30(9):1638–1644. doi:10.1093/carcin/bgp170

    CAS  Google Scholar 

  21. Choi JW, Kim DG, Lee AE, Kim HR, Lee JY, Kwon NH, Shin YK, Hwang SK, Chang SH, Cho MH, Choi YL, Kim J, Oh SH, Kim B, Kim SY, Jeon HS, Park JY, Kang HP, Park BJ, Han JM, Kim S (2011) Cancer-associated splicing variant of tumor suppressor AIMP2/p38: pathological implication in tumorigenesis. PLoS Genet 7(3):e1001351. doi:10.1371/journal.pgen.1001351

    CAS  Google Scholar 

  22. Choi JW, Lee JW, Kim JK, Jeon HK, Choi JJ, Kim DG, Kim BG, Nam DH, Kim HJ, Yun SH, Kim S (2012) Splicing variant of AIMP2 as an effective target against chemoresistant ovarian cancer. J Mol Cell Biol 4(3):164–173. doi:10.1093/jmcb/mjs018

    Google Scholar 

  23. Ko YG, Kim EY, Kim T, Park H, Park HS, Choi EJ, Kim S (2001) Glutamine-dependent antiapoptotic interaction of human glutaminyl-tRNA synthetase with apoptosis signal-regulating kinase 1. J Biol Chem 276(8):6030–6036. doi:10.1074/jbc.M006189200

    CAS  Google Scholar 

  24. Kim DG, Choi JW, Lee JY, Kim H, Oh YS, Lee JW, Tak YK, Song JM, Razin E, Yun SH, Kim S (2012) Interaction of two translational components, lysyl-tRNA synthetase and p40/37LRP, in plasma membrane promotes laminin-dependent cell migration. FASEB J 26(10):4142–4159. doi:10.1096/fj.12-207639

    CAS  Google Scholar 

  25. Mukhopadhyay R, Jia J, Arif A, Ray PS, Fox PL (2009) The GAIT system: a gatekeeper of inflammatory gene expression. Trends Biochem Sci 34(7):324–331. doi:10.1016/j.tibs.2009.03.004

    CAS  Google Scholar 

  26. Williams TF, Mirando AC, Wilkinson B, Francklyn CS, Lounsbury KM (2013) Secreted threonyl-tRNA synthetase stimulates endothelial cell migration and angiogenesis. Sci Rep 3:1317. doi:10.1038/srep01317

    Google Scholar 

  27. Xu X, Shi Y, Zhang HM, Swindell EC, Marshall AG, Guo M, Kishi S, Yang XL (2012) Unique domain appended to vertebrate tRNA synthetase is essential for vascular development. Nat Commun 3:681. doi:10.1038/ncomms1686

    Google Scholar 

  28. Barrett T, Troup DB, Wilhite SE, Ledoux P, Rudnev D, Evangelista C, Kim IF, Soboleva A, Tomashevsky M, Marshall KA, Phillippy KH, Sherman PM, Muertter RN, Edgar R (2009) NCBI GEO: archive for high-throughput functional genomic data. Nucleic Acids Res 37(Database issue):D885–D890. doi:10.1093/nar/gkn764

    CAS  Google Scholar 

  29. Parkinson H, Kapushesky M, Shojatalab M, Abeygunawardena N, Coulson R, Farne A, Holloway E, Kolesnykov N, Lilja P, Lukk M, Mani R, Rayner T, Sharma A, William E, Sarkans U, Brazma A (2007) ArrayExpress – a public database of microarray experiments and gene expression profiles. Nucleic Acids Res 35(Database issue):D747–D750. doi:10.1093/nar/gkl995

    CAS  Google Scholar 

  30. Hwang D, Rust AG, Ramsey S, Smith JJ, Leslie DM, Weston AD, de Atauri P, Aitchison JD, Hood L, Siegel AF, Bolouri H (2005) A data integration methodology for systems biology. Proc Natl Acad Sci USA 102(48):17296–17301. doi:10.1073/pnas.0508647102

    CAS  Google Scholar 

  31. Scheinin I, Myllykangas S, Borze I, Bohling T, Knuutila S, Saharinen J (2008) CanGEM: mining gene copy number changes in cancer. Nucleic Acids Res 36(Database issue):D830–D835. doi:10.1093/nar/gkm802

    CAS  Google Scholar 

  32. Plas DR, Thomas G (2009) Tubers and tumors: rapamycin therapy for benign and malignant tumors. Curr Opin Cell Biol 21(2):230–236. doi:10.1016/j.ceb.2008.12.013

    CAS  Google Scholar 

  33. Bonfils G, Jaquenoud M, Bontron S, Ostrowicz C, Ungermann C, De Virgilio C (2012) Leucyl-tRNA synthetase controls TORC1 via the EGO complex. Mol Cell 46(1):105–110. doi:10.1016/j.molcel.2012.02.009

    CAS  Google Scholar 

  34. Shin SH, Kim HS, Jung SH, Xu HD, Jeong YB, Chung YJ (2008) Implication of leucyl-tRNA synthetase 1 (LARS1) over-expression in growth and migration of lung cancer cells detected by siRNA targeted knock-down analysis. Exp Mol Med 40(2):229–236

    CAS  Google Scholar 

  35. Lukk M, Kapushesky M, Nikkila J, Parkinson H, Goncalves A, Huber W, Ukkonen E, Brazma A (2010) A global map of human gene expression. Nat Biotechnol 28(4):322–324. doi:10.1038/nbt0410-322

    CAS  Google Scholar 

  36. Uhlen M, Bjorling E, Agaton C, Szigyarto CA, Amini B, Andersen E, Andersson AC, Angelidou P, Asplund A, Asplund C, Berglund L, Bergstrom K, Brumer H, Cerjan D, Ekstrom M, Elobeid A, Eriksson C, Fagerberg L, Falk R, Fall J, Forsberg M, Bjorklund MG, Gumbel K, Halimi A, Hallin I, Hamsten C, Hansson M, Hedhammar M, Hercules G, Kampf C, Larsson K, Lindskog M, Lodewyckx W, Lund J, Lundeberg J, Magnusson K, Malm E, Nilsson P, Odling J, Oksvold P, Olsson I, Oster E, Ottosson J, Paavilainen L, Persson A, Rimini R, Rockberg J, Runeson M, Sivertsson A, Skollermo A, Steen J, Stenvall M, Sterky F, Stromberg S, Sundberg M, Tegel H, Tourle S, Wahlund E, Walden A, Wan J, Wernerus H, Westberg J, Wester K, Wrethagen U, Xu LL, Hober S, Ponten F (2005) A human protein atlas for normal and cancer tissues based on antibody proteomics. Mol Cell Proteomics 4(12):1920–1932. doi:10.1074/mcp.M500279-MCP200

    CAS  Google Scholar 

  37. Ghanipour A, Jirstrom K, Ponten F, Glimelius B, Pahlman L, Birgisson H (2009) The prognostic significance of tryptophanyl-tRNA synthetase in colorectal cancer. Cancer Epidemiol Biomarkers Prev 18(11):2949–2956. doi:10.1158/1055-9965.EPI-09-0456

    CAS  Google Scholar 

  38. Otani A, Slike BM, Dorrell MI, Hood J, Kinder K, Ewalt KL, Cheresh D, Schimmel P, Friedlander M (2002) A fragment of human TrpRS as a potent antagonist of ocular angiogenesis. Proc Natl Acad Sci USA 99(1):178–183. doi:10.1073/pnas.012601899

    CAS  Google Scholar 

  39. Liu J, Shue E, Ewalt KL, Schimmel P (2004) A new gamma-interferon-inducible promoter and splice variants of an anti-angiogenic human tRNA synthetase. Nucleic Acids Res 32(2):719–727. doi:10.1093/nar/gkh240

    CAS  Google Scholar 

  40. Sajish M, Zhou Q, Kishi S, Valdez DM Jr, Kapoor M, Guo M, Lee S, Kim S, Yang XL, Schimmel P (2012) Trp-tRNA synthetase bridges DNA-PKcs to PARP-1 to link IFN-gamma and p53 signaling. Nat Chem Biol 8(6):547–554. doi:10.1038/nchembio.937

    CAS  Google Scholar 

  41. Vellaichamy A, Sreekumar A, Strahler JR, Rajendiran T, Yu J, Varambally S, Li Y, Omenn GS, Chinnaiyan AM, Nesvizhskii AI (2009) Proteomic interrogation of androgen action in prostate cancer cells reveals roles of aminoacyl tRNA synthetases. PLoS One 4(9):e7075. doi:10.1371/journal.pone.0007075

    Google Scholar 

  42. Zhang J, Niu D, Sui J, Ching CB, Chen WN (2009) Protein profile in hepatitis B virus replicating rat primary hepatocytes and HepG2 cells by iTRAQ-coupled 2-D LC-MS/MS analysis: insights on liver angiogenesis. Proteomics 9(10):2836–2845. doi:10.1002/pmic.200800911

    CAS  Google Scholar 

  43. Calin GA, Croce CM (2006) MicroRNA signatures in human cancers. Nat Rev Cancer 6(11):857–866. doi:10.1038/nrc1997

    CAS  Google Scholar 

  44. Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, Aldler H, Rattan S, Keating M, Rai K, Rassenti L, Kipps T, Negrini M, Bullrich F, Croce CM (2002) Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 99(24):15524–15529. doi:10.1073/pnas.242606799

    CAS  Google Scholar 

  45. Bottoni A, Piccin D, Tagliati F, Luchin A, Zatelli MC, degli Uberti EC (2005) miR-15a and miR-16-1 down-regulation in pituitary adenomas. J Cell Physiol 204(1):280–285. doi:10.1002/jcp.20282

    CAS  Google Scholar 

  46. Sun L, Hui AM, Su Q, Vortmeyer A, Kotliarov Y, Pastorino S, Passaniti A, Menon J, Walling J, Bailey R, Rosenblum M, Mikkelsen T, Fine HA (2006) Neuronal and glioma-derived stem cell factor induces angiogenesis within the brain. Cancer Cell 9(4):287–300. doi:10.1016/j.ccr.2006.03.003

    CAS  Google Scholar 

  47. Sen S, Zhou H, Ripmaster T, Hittelman WN, Schimmel P, White RA (1997) Expression of a gene encoding a tRNA synthetase-like protein is enhanced in tumorigenic human myeloid leukemia cells and is cell cycle stage- and differentiation-dependent. Proc Natl Acad Sci USA 94(12):6164–6169

    CAS  Google Scholar 

  48. Lieber M, Smith B, Szakal A, Nelson-Rees W, Todaro G (1976) A continuous tumor-cell line from a human lung carcinoma with properties of type II alveolar epithelial cells. Int J Cancer 17(1):62–70

    CAS  Google Scholar 

  49. Wasenius VM, Hemmer S, Kettunen E, Knuutila S, Franssila K, Joensuu H (2003) Hepatocyte growth factor receptor, matrix metalloproteinase-11, tissue inhibitor of metalloproteinase-1, and fibronectin are up-regulated in papillary thyroid carcinoma: a cDNA and tissue microarray study. Clin Cancer Res 9(1):68–75

    CAS  Google Scholar 

  50. Kushner JP, Boll D, Quagliana J, Dickman S (1976) Elevated methionine-tRNA synthetase activity in human colon cancer. Proc Soc Exp Biol Med 153(2):273–276

    CAS  Google Scholar 

  51. Forus A, Florenes VA, Maelandsmo GM, Fodstad O, Myklebost O (1994) The protooncogene CHOP/GADD153, involved in growth arrest and DNA damage response, is amplified in a subset of human sarcomas. Cancer Genet Cytogenet 78(2):165–171

    CAS  Google Scholar 

  52. Nilbert M, Rydholm A, Mitelman F, Meltzer PS, Mandahl N (1995) Characterization of the 12q13-15 amplicon in soft tissue tumors. Cancer Genet Cytogenet 83(1):32–36

    CAS  Google Scholar 

  53. Palmer JL, Masui S, Pritchard S, Kalousek DK, Sorensen PH (1997) Cytogenetic and molecular genetic analysis of a pediatric pleomorphic sarcoma reveals similarities to adult malignant fibrous histiocytoma. Cancer Genet Cytogenet 95(2):141–147

    CAS  Google Scholar 

  54. Reifenberger G, Ichimura K, Reifenberger J, Elkahloun AG, Meltzer PS, Collins VP (1996) Refined mapping of 12q13-q15 amplicons in human malignant gliomas suggests CDK4/SAS and MDM2 as independent amplification targets. Cancer Res 56(22):5141–5145

    CAS  Google Scholar 

  55. Han JM, Park BJ, Park SG, Oh YS, Choi SJ, Lee SW, Hwang SK, Chang SH, Cho MH, Kim S (2008) AIMP2/p38, the scaffold for the multi-tRNA synthetase complex, responds to genotoxic stresses via p53. Proc Natl Acad Sci USA 105(32):11206–11211. doi:10.1073/pnas.0800297105

    CAS  Google Scholar 

  56. Oh YS, Kim DG, Kim G, Choi EC, Kennedy BK, Suh Y, Park BJ, Kim S (2010) Downregulation of lamin A by tumor suppressor AIMP3/p18 leads to a progeroid phenotype in mice. Aging Cell 9(5):810–822. doi:10.1111/j.1474-9726.2010.00614.x

    CAS  Google Scholar 

  57. Kim KJ, Park MC, Choi SJ, Oh YS, Choi EC, Cho HJ, Kim MH, Kim SH, Kim DW, Kim S, Kang BS (2008) Determination of three-dimensional structure and residues of the novel tumor suppressor AIMP3/p18 required for the interaction with ATM. J Biol Chem 283(20):14032–14040. doi:10.1074/jbc.M800859200

    CAS  Google Scholar 

  58. Miyaki M, Iijima T, Shiba K, Aki T, Kita Y, Yasuno M, Mori T, Kuroki T, Iwama T (2001) Alterations of repeated sequences in 5′ upstream and coding regions in colorectal tumors from patients with hereditary nonpolyposis colorectal cancer and Turcot syndrome. Oncogene 20(37):5215–5218. doi:10.1038/sj.onc.1204578

    CAS  Google Scholar 

  59. Park SW, Kim SS, Yoo NJ, Lee SH (2010) Frameshift mutation of MARS gene encoding an aminoacyl-tRNA synthetase in gastric and colorectal carcinomas with microsatellite instability. Gut Liver 4(3):430–431. doi:10.5009/gnl.2010.4.3.430

    Google Scholar 

  60. Yao P, Potdar AA, Arif A, Ray PS, Mukhopadhyay R, Willard B, Xu Y, Yan J, Saidel GM, Fox PL (2012) Coding region polyadenylation generates a truncated tRNA synthetase that counters translation repression. Cell 149(1):88–100. doi:10.1016/j.cell.2012.02.018

    CAS  Google Scholar 

  61. Debelenko LV, Arthur DC, Pack SD, Helman LJ, Schrump DS, Tsokos M (2003) Identification of CARS-ALK fusion in primary and metastatic lesions of an inflammatory myofibroblastic tumor. Lab Invest 83(9):1255–1265

    CAS  Google Scholar 

  62. Hu RJ, Lee MP, Connors TD, Johnson LA, Burn TC, Su K, Landes GM, Feinberg AP (1997) A 2.5-Mb transcript map of a tumor-suppressing subchromosomal transferable fragment from 11p15.5, and isolation and sequence analysis of three novel genes. Genomics 46(1):9–17. doi:10.1006/geno.1997.4981

    CAS  Google Scholar 

  63. Reid LH, Davies C, Cooper PR, Crider-Miller SJ, Sait SN, Nowak NJ, Evans G, Stanbridge EJ, deJong P, Shows TB, Weissman BE, Higgins MJ (1997) A 1-Mb physical map and PAC contig of the imprinted domain in 11p15.5 that contains TAPA1 and the BWSCR1/WT2 region. Genomics 43(3):366–375. doi:10.1006/geno.1997.4826

    CAS  Google Scholar 

  64. Xu XL, Wu LC, Du F, Davis A, Peyton M, Tomizawa Y, Maitra A, Tomlinson G, Gazdar AF, Weissman BE, Bowcock AM, Baer R, Minna JD (2001) Inactivation of human SRBC, located within the 11p15.5-p15.4 tumor suppressor region, in breast and lung cancers. Cancer Res 61(21):7943–7949

    CAS  Google Scholar 

  65. Zhao B, Bepler G (2001) Transcript map and complete genomic sequence for the 310 kb region of minimal allele loss on chromosome segment 11p15.5 in non-small-cell lung cancer. Oncogene 20(56):8154–8164. doi:10.1038/sj.onc.1205027

    CAS  Google Scholar 

  66. Zhou W, Feng X, Li H, Wang L, Zhu B, Liu W, Zhao M, Yao K, Ren C (2009) Inactivation of LARS2, located at the commonly deleted region 3p21.3, by both epigenetic and genetic mechanisms in nasopharyngeal carcinoma. Acta Biochim Biophys Sin 41(1):54–62

    CAS  Google Scholar 

  67. Pui CH, Jeha S (2007) New therapeutic strategies for the treatment of acute lymphoblastic leukaemia. Nat Rev Drug Discov 6(2):149–165. doi:10.1038/nrd2240

    CAS  Google Scholar 

  68. Palmer RH, Vernersson E, Grabbe C, Hallberg B (2009) Anaplastic lymphoma kinase: signalling in development and disease. Biochem J 420(3):345–361. doi:10.1042/BJ20090387

    CAS  Google Scholar 

  69. Lee SW, Kang YS, Kim S (2006) Multifunctional proteins in tumorigenesis: aminoacyl-tRNA synthetases and translational components. Curr Proteomics 3(4):233–247

    CAS  Google Scholar 

  70. Ubeda M, Schmitt-Ney M, Ferrer J, Habener JF (1999) CHOP/GADD153 and methionyl-tRNA synthetase (MetRS) genes overlap in a conserved region that controls mRNA stability. Biochem Biophys Res Commun 262(1):31–38. doi:10.1006/bbrc.1999.1140

    CAS  Google Scholar 

  71. Ray PS, Fox PL (2007) A post-transcriptional pathway represses monocyte VEGF-A expression and angiogenic activity. EMBO J 26(14):3360–3372. doi:10.1038/sj.emboj.7601774

    CAS  Google Scholar 

  72. Karni R, de Stanchina E, Lowe SW, Sinha R, Mu D, Krainer AR (2007) The gene encoding the splicing factor SF2/ASF is a proto-oncogene. Nat Struct Mol Biol 14(3):185–193. doi:10.1038/nsmb1209

    CAS  Google Scholar 

  73. Wakasugi K, Slike BM, Hood J, Otani A, Ewalt KL, Friedlander M, Cheresh DA, Schimmel P (2002) A human aminoacyl-tRNA synthetase as a regulator of angiogenesis. Proc Natl Acad Sci USA 99(1):173–177. doi:10.1073/pnas.012602099

    CAS  Google Scholar 

  74. Turpaev KT, Zakhariev VM, Sokolova IV, Narovlyansky AN, Amchenkova AM, Justesen J, Frolova LY (1996) Alternative processing of the tryptophanyl-tRNA synthetase mRNA from interferon-treated human cells. Eur J Biochem (FEBS) 240(3):732–737

    CAS  Google Scholar 

  75. Tolstrup AB, Bejder A, Fleckner J, Justesen J (1995) Transcriptional regulation of the interferon-gamma-inducible tryptophanyl-tRNA synthetase includes alternative splicing. J Biol Chem 270(1):397–403

    CAS  Google Scholar 

  76. Paley EL, Paley DE, Merkulova-Rainon T, Subbarayan PR (2011) Hypoxia signature of splice forms of tryptophanyl-tRNA synthetase marks pancreatic cancer cells with distinct metastatic abilities. Pancreas 40(7):1043–1056. doi:10.1097/MPA.0b013e318222e635

    CAS  Google Scholar 

  77. Tzima E, Reader JS, Irani-Tehrani M, Ewalt KL, Schwartz MA, Schimmel P (2005) VE-cadherin links tRNA synthetase cytokine to anti-angiogenic function. J Biol Chem 280(4):2405–2408. doi:10.1074/jbc.C400431200

    CAS  Google Scholar 

  78. Yang XL, Guo M, Kapoor M, Ewalt KL, Otero FJ, Skene RJ, McRee DE, Schimmel P (2007) Functional and crystal structure analysis of active site adaptations of a potent anti-angiogenic human tRNA synthetase. Structure 15(7):793–805. doi:10.1016/j.str.2007.05.009

    CAS  Google Scholar 

  79. Guo M, Schimmel P, Yang XL (2010) Functional expansion of human tRNA synthetases achieved by structural inventions. FEBS Lett 584(2):434–442. doi:10.1016/j.febslet.2009.11.064

    CAS  Google Scholar 

  80. Wakasugi K, Schimmel P (1999) Highly differentiated motifs responsible for two cytokine activities of a split human tRNA synthetase. J Biol Chem 274(33):23155–23159

    CAS  Google Scholar 

  81. Vo MN, Yang XL, Schimmel P (2011) Dissociating quaternary structure regulates cell-signaling functions of a secreted human tRNA synthetase. J Biol Chem 286(13):11563–11568. doi:10.1074/jbc.C110.213876

    CAS  Google Scholar 

  82. Zeng R, Chen YC, Zeng Z, Liu XX, Liu R, Qiang O, Li X (2012) Inhibition of mini-TyrRS-induced angiogenesis response in endothelial cells by VE-cadherin-dependent mini-TrpRS. Heart Vessels 27(2):193–201. doi:10.1007/s00380-011-0137-1

    Google Scholar 

  83. van Horssen R, Eggermont AM, ten Hagen TL (2006) Endothelial monocyte-activating polypeptide-II and its functions in (patho)physiological processes. Cytokine Growth Factor Rev 17(5):339–348. doi:10.1016/j.cytogfr.2006.08.001

    Google Scholar 

  84. Behrensdorf HA, van de Craen M, Knies UE, Vandenabeele P, Clauss M (2000) The endothelial monocyte-activating polypeptide II (EMAP II) is a substrate for caspase-7. FEBS Lett 466(1):143–147

    CAS  Google Scholar 

  85. Knies UE, Behrensdorf HA, Mitchell CA, Deutsch U, Risau W, Drexler HC, Clauss M (1998) Regulation of endothelial monocyte-activating polypeptide II release by apoptosis. Proc Natl Acad Sci USA 95(21):12322–12327

    CAS  Google Scholar 

  86. Barnett G, Jakobsen AM, Tas M, Rice K, Carmichael J, Murray JC (2000) Prostate adenocarcinoma cells release the novel proinflammatory polypeptide EMAP-II in response to stress. Cancer Res 60(11):2850–2857

    CAS  Google Scholar 

  87. Park SG, Kang YS, Ahn YH, Lee SH, Kim KR, Kim KW, Koh GY, Ko YG, Kim S (2002) Dose-dependent biphasic activity of tRNA synthetase-associating factor, p43, in angiogenesis. J Biol Chem 277(47):45243–45248. doi:10.1074/jbc.M207934200

    CAS  Google Scholar 

  88. Tas MP, Murray JC (1996) Endothelial-monocyte-activating polypeptide II. Int J Biochem Cell Biol 28(8):837–841

    CAS  Google Scholar 

  89. Arif A, Jia J, Mukhopadhyay R, Willard B, Kinter M, Fox PL (2009) Two-site phosphorylation of EPRS coordinates multimodal regulation of noncanonical translational control activity. Mol Cell 35(2):164–180. doi:10.1016/j.molcel.2009.05.028

    CAS  Google Scholar 

  90. Kwon NH, Kang T, Lee JY, Kim HH, Kim HR, Hong J, Oh YS, Han JM, Ku MJ, Lee SY, Kim S (2011) Dual role of methionyl-tRNA synthetase in the regulation of translation and tumor suppressor activity of aminoacyl-tRNA synthetase-interacting multifunctional protein-3. Proc Natl Acad Sci USA 108(49):19635–19640. doi:10.1073/pnas.1103922108

    CAS  Google Scholar 

  91. Hsieh AC, Liu Y, Edlind MP, Ingolia NT, Janes MR, Sher A, Shi EY, Stumpf CR, Christensen C, Bonham MJ, Wang S, Ren P, Martin M, Jessen K, Feldman ME, Weissman JS, Shokat KM, Rommel C, Ruggero D (2012) The translational landscape of mTOR signalling steers cancer initiation and metastasis. Nature 485(7396):55–61. doi:10.1038/nature10912

    CAS  Google Scholar 

  92. Guertin DA, Sabatini DM (2005) An expanding role for mTOR in cancer. Trends Mol Med 11(8):353–361. doi:10.1016/j.molmed.2005.06.007

    CAS  Google Scholar 

  93. Sancak Y, Peterson TR, Shaul YD, Lindquist RA, Thoreen CC, Bar-Peled L, Sabatini DM (2008) The rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 320(5882):1496–1501. doi:10.1126/science.1157535

    CAS  Google Scholar 

  94. Kim E, Goraksha-Hicks P, Li L, Neufeld TP, Guan KL (2008) Regulation of TORC1 by Rag GTPases in nutrient response. Nat Cell Biol 10(8):935–945. doi:10.1038/ncb1753

    CAS  Google Scholar 

  95. Lee YN, Nechushtan H, Figov N, Razin E (2004) The function of lysyl-tRNA synthetase and Ap4A as signaling regulators of MITF activity in FcepsilonRI-activated mast cells. Immunity 20(2):145–151

    CAS  Google Scholar 

  96. Yannay-Cohen N, Carmi-Levy I, Kay G, Yang CM, Han JM, Kemeny DM, Kim S, Nechushtan H, Razin E (2009) LysRS serves as a key signaling molecule in the immune response by regulating gene expression. Mol Cell 34(5):603–611. doi:10.1016/j.molcel.2009.05.019

    CAS  Google Scholar 

  97. Ofir-Birin Y, Fang P, Bennett SP, Zhang HM, Wang J, Rachmin I, Shapiro R, Song J, Dagan A, Pozo J, Kim S, Marshall AG, Schimmel P, Yang XL, Nechushtan H, Razin E, Guo M (2013) Structural switch of lysyl-tRNA synthetase between translation and transcription. Mol Cell 49(1):30–42. doi:10.1016/j.molcel.2012.10.010

    CAS  Google Scholar 

  98. Berno V, Porrini D, Castiglioni F, Campiglio M, Casalini P, Pupa SM, Balsari A, Menard S, Tagliabue E (2005) The 67 kDa laminin receptor increases tumor aggressiveness by remodeling laminin-1. Endocr Relat Cancer 12(2):393–406. doi:10.1677/erc.1.00870

    CAS  Google Scholar 

  99. van den Brule FA, Buicu C, Berchuck A, Bast RC, Deprez M, Liu FT, Cooper DN, Pieters C, Sobel ME, Castronovo V (1996) Expression of the 67-kD laminin receptor, galectin-1, and galectin-3 in advanced human uterine adenocarcinoma. Hum Pathol 27(11):1185–1191

    Google Scholar 

  100. Sanjuan X, Fernandez PL, Miquel R, Munoz J, Castronovo V, Menard S, Palacin A, Cardesa A, Campo E (1996) Overexpression of the 67-kD laminin receptor correlates with tumour progression in human colorectal carcinoma. J Pathol 179(4):376–380. doi:10.1002/(SICI)1096-9896(199608)179:4<376::AID-PATH591>3.0.CO;2-V

    CAS  Google Scholar 

  101. Fontanini G, Vignati S, Chine S, Lucchi M, Mussi A, Angeletti CA, Menard S, Castronovo V, Bevilacqua G (1997) 67-Kilodalton laminin receptor expression correlates with worse prognostic indicators in non-small cell lung carcinomas. Clin Cancer Res 3(2):227–231

    CAS  Google Scholar 

  102. Liu L, Sun L, Zhao P, Yao L, Jin H, Liang S, Wang Y, Zhang D, Pang Y, Shi Y, Chai N, Zhang H (2010) Hypoxia promotes metastasis in human gastric cancer by up-regulating the 67-kDa laminin receptor. Cancer Sci 101(7):1653–1660. doi:10.1111/j.1349-7006.2010.01592.x

    CAS  Google Scholar 

  103. Wakasugi K, Slike BM, Hood J, Ewalt KL, Cheresh DA, Schimmel P (2002) Induction of angiogenesis by a fragment of human tyrosyl-tRNA synthetase. J Biol Chem 277(23):20124–20126. doi:10.1074/jbc.C200126200

    CAS  Google Scholar 

  104. Wakasugi K, Schimmel P (1999) Two distinct cytokines released from a human aminoacyl-tRNA synthetase. Science 284(5411):147–151

    CAS  Google Scholar 

  105. Kapoor M, Otero FJ, Slike BM, Ewalt KL, Yang XL (2009) Mutational separation of aminoacylation and cytokine activities of human tyrosyl-tRNA synthetase. Chem Biol 16(5):531–539. doi:10.1016/j.chembiol.2009.03.006

    CAS  Google Scholar 

  106. Kapoor M, Zhou Q, Otero F, Myers CA, Bates A, Belani R, Liu J, Luo JK, Tzima E, Zhang DE, Yang XL, Schimmel P (2008) Evidence for annexin II-S100A10 complex and plasmin in mobilization of cytokine activity of human TrpRS. J Biol Chem 283(4):2070–2077. doi:10.1074/jbc.M706028200

    CAS  Google Scholar 

  107. Yu Y, Liu Y, Shen N, Xu X, Xu F, Jia J, Jin Y, Arnold E, Ding J (2004) Crystal structure of human tryptophanyl-tRNA synthetase catalytic fragment: insights into substrate recognition, tRNA binding, and angiogenesis activity. J Biol Chem 279(9):8378–8388. doi:10.1074/jbc.M311284200

    CAS  Google Scholar 

  108. Patel SD, Ciatto C, Chen CP, Bahna F, Rajebhosale M, Arkus N, Schieren I, Jessell TM, Honig B, Price SR, Shapiro L (2006) Type II cadherin ectodomain structures: implications for classical cadherin specificity. Cell 124(6):1255–1268. doi:10.1016/j.cell.2005.12.046

    CAS  Google Scholar 

  109. Zhou Q, Kapoor M, Guo M, Belani R, Xu X, Kiosses WB, Hanan M, Park C, Armour E, Do MH, Nangle LA, Schimmel P, Yang XL (2010) Orthogonal use of a human tRNA synthetase active site to achieve multifunctionality. Nat Struct Mol Biol 17(1):57–61. doi:10.1038/nsmb.1706

    CAS  Google Scholar 

  110. Labirua A, Lundberg IE (2010) Interstitial lung disease and idiopathic inflammatory myopathies: progress and pitfalls. Curr Opin Rheumatol 22(6):633–638. doi:10.1097/BOR.0b013e32833f1970

    Google Scholar 

  111. Keller TL, Zocco D, Sundrud MS, Hendrick M, Edenius M, Yum J, Kim YJ, Lee HK, Cortese JF, Wirth DF, Dignam JD, Rao A, Yeo CY, Mazitschek R, Whitman M (2012) Halofuginone and other febrifugine derivatives inhibit prolyl-tRNA synthetase. Nat Chem Biol 8(3):311–317. doi:10.1038/nchembio.790

    CAS  Google Scholar 

  112. Mazumder B, Sampath P, Seshadri V, Maitra RK, DiCorleto PE, Fox PL (2003) Regulated release of L13a from the 60S ribosomal subunit as a mechanism of transcript-specific translational control. Cell 115(2):187–198

    CAS  Google Scholar 

  113. Sampath P, Mazumder B, Seshadri V, Gerber CA, Chavatte L, Kinter M, Ting SM, Dignam JD, Kim S, Driscoll DM, Fox PL (2004) Noncanonical function of glutamyl-prolyl-tRNA synthetase: gene-specific silencing of translation. Cell 119(2):195–208. doi:10.1016/j.cell.2004.09.030

    CAS  Google Scholar 

  114. Jia J, Arif A, Ray PS, Fox PL (2008) WHEP domains direct noncanonical function of glutamyl-prolyl tRNA synthetase in translational control of gene expression. Mol Cell 29(6):679–690. doi:10.1016/j.molcel.2008.01.010

    CAS  Google Scholar 

  115. Fukui H, Hanaoka R, Kawahara A (2009) Noncanonical activity of seryl-tRNA synthetase is involved in vascular development. Circ Res 104(11):1253–1259. doi:10.1161/CIRCRESAHA.108.191189

    CAS  Google Scholar 

  116. Herzog W, Muller K, Huisken J, Stainier DY (2009) Genetic evidence for a noncanonical function of seryl-tRNA synthetase in vascular development. Circ Res 104(11):1260–1266. doi:10.1161/CIRCRESAHA.108.191718

    CAS  Google Scholar 

  117. Ruggero D, Pandolfi PP (2003) Does the ribosome translate cancer? Nat Rev Cancer 3(3):179–192. doi:10.1038/nrc1015

    CAS  Google Scholar 

  118. Drygin D, Lin A, Bliesath J, Ho CB, O’Brien SE, Proffitt C, Omori M, Haddach M, Schwaebe MK, Siddiqui-Jain A, Streiner N, Quin JE, Sanij E, Bywater MJ, Hannan RD, Ryckman D, Anderes K, Rice WG (2011) Targeting RNA polymerase I with an oral small molecule CX-5461 inhibits ribosomal RNA synthesis and solid tumor growth. Cancer Res 71(4):1418–1430. doi:10.1158/0008-5472.CAN-10-1728

    CAS  Google Scholar 

  119. Netzer N, Goodenbour JM, David A, Dittmar KA, Jones RB, Schneider JR, Boone D, Eves EM, Rosner MR, Gibbs JS, Embry A, Dolan B, Das S, Hickman HD, Berglund P, Bennink JR, Yewdell JW, Pan T (2009) Innate immune and chemically triggered oxidative stress modifies translational fidelity. Nature 462(7272):522–526. doi:10.1038/nature08576

    CAS  Google Scholar 

  120. De Luca A, Sanna F, Sallese M, Ruggiero C, Grossi M, Sacchetta P, Rossi C, De Laurenzi V, Di Ilio C, Favaloro B (2010) Methionine sulfoxide reductase A down-regulation in human breast cancer cells results in a more aggressive phenotype. Proc Natl Acad Sci USA 107(43):18628–18633. doi:10.1073/pnas.1010171107

    Google Scholar 

  121. Ma Y, Hendershot LM (2004) The role of the unfolded protein response in tumour development: friend or foe? Nat Rev Cancer 4(12):966–977. doi:10.1038/nrc1505

    CAS  Google Scholar 

  122. Irvine GB, El-Agnaf OM, Shankar GM, Walsh DM (2008) Protein aggregation in the brain: the molecular basis for Alzheimer’s and Parkinson’s diseases. Mol Med 14(7–8):451–464. doi:10.2119/2007-00100.Irvine

    CAS  Google Scholar 

  123. Lee JW, Beebe K, Nangle LA, Jang J, Longo-Guess CM, Cook SA, Davisson MT, Sundberg JP, Schimmel P, Ackerman SL (2006) Editing-defective tRNA synthetase causes protein misfolding and neurodegeneration. Nature 443(7107):50–55. doi:10.1038/nature05096

    CAS  Google Scholar 

  124. Beebe K, Mock M, Merriman E, Schimmel P (2008) Distinct domains of tRNA synthetase recognize the same base pair. Nature 451(7174):90–93. doi:10.1038/nature06454

    CAS  Google Scholar 

  125. Ahel I, Korencic D, Ibba M, Soll D (2003) Trans-editing of mischarged tRNAs. Proc Natl Acad Sci USA 100(26):15422–15427. doi:10.1073/pnas.2136934100

    CAS  Google Scholar 

  126. Chen Z, Seimiya H, Naito M, Mashima T, Kizaki A, Dan S, Imaizumi M, Ichijo H, Miyazono K, Tsuruo T (1999) ASK1 mediates apoptotic cell death induced by genotoxic stress. Oncogene 18(1):173–180. doi:10.1038/sj.onc.1202276

    CAS  Google Scholar 

  127. Kang T, Kwon NH, Lee JY, Park MC, Kang E, Kim HH, Kang TJ, Kim S (2012) AIMP3/p18 controls translational initiation by mediating the delivery of charged initiator tRNA to initiation complex. J Mol Biol 423(4):475–481. doi:10.1016/j.jmb.2012.07.020

    CAS  Google Scholar 

  128. Han JM, Lee MJ, Park SG, Lee SH, Razin E, Choi EC, Kim S (2006) Hierarchical network between the components of the multi-tRNA synthetase complex: implications for complex formation. J Biol Chem 281(50):38663–38667. doi:10.1074/jbc.M605211200

    CAS  Google Scholar 

  129. Lee YS, Han JM, Son SH, Choi JW, Jeon EJ, Bae SC, Park YI, Kim S (2008) AIMP1/p43 downregulates TGF-beta signaling via stabilization of smurf2. Biochem Biophys Res Commun 371(3):395–400. doi:10.1016/j.bbrc.2008.04.099

    CAS  Google Scholar 

  130. Yi JS, Lee JY, Chi SG, Kim JH, Park SG, Kim S, Ko YG (2005) Aminoacyl-tRNA synthetase-interacting multi-functional protein, p43, is imported to endothelial cells via lipid rafts. J Cell Biochem 96(6):1286–1295. doi:10.1002/jcb.20632

    CAS  Google Scholar 

  131. Jackson VC, Dewilde S, Albo AG, Lis K, Corpillo D, Canepa B (2011) The activity of aminoacyl-tRNA synthetase-interacting multi-functional protein 1 (AIMP1) on endothelial cells is mediated by the assembly of a cytoskeletal protein complex. J Cell Biochem 112(7):1857–1868. doi:10.1002/jcb.23104

    CAS  Google Scholar 

  132. Lee BC, O’Sullivan I, Kim E, Park SG, Hwang SY, Cho D, Kim TS (2009) A DNA adjuvant encoding a fusion protein between anti-CD3 single-chain Fv and AIMP1 enhances T helper type 1 cell-mediated immune responses in antigen-sensitized mice. Immunology 126(1):84–91. doi:10.1111/j.1365-2567.2008.02880.x

    CAS  Google Scholar 

  133. Han JM, Myung H, Kim S (2010) Antitumor activity and pharmacokinetic properties of ARS-interacting multi-functional protein 1 (AIMP1/p43). Cancer Lett 287(2):157–164. doi:10.1016/j.canlet.2009.06.005

    CAS  Google Scholar 

  134. Park H, Park SG, Kim J, Ko YG, Kim S (2002) Signaling pathways for TNF production induced by human aminoacyl-tRNA synthetase-associating factor, p43. Cytokine 20(4):148–153

    CAS  Google Scholar 

  135. Park SG, Shin H, Shin YK, Lee Y, Choi EC, Park BJ, Kim S (2005) The novel cytokine p43 stimulates dermal fibroblast proliferation and wound repair. Am J Pathol 166(2):387–398. doi:10.1016/S0002-9440(10)62262-6

    CAS  Google Scholar 

  136. Kwon HS, Park MC, Kim DG, Cho K, Park YW, Han JM, Kim S (2012) Identification of CD23 as a functional receptor for the proinflammatory cytokine AIMP1/p43. J Cell Sci 125(Pt 19):4620–4629. doi:10.1242/jcs.108209

    CAS  Google Scholar 

  137. Janssens S, Tinel A, Lippens S, Tschopp J (2005) PIDD mediates NF-kappaB activation in response to DNA damage. Cell 123(6):1079–1092. doi:10.1016/j.cell.2005.09.036

    CAS  Google Scholar 

  138. Deng J, Harding HP, Raught B, Gingras AC, Berlanga JJ, Scheuner D, Kaufman RJ, Ron D, Sonenberg N (2002) Activation of GCN2 in UV-irradiated cells inhibits translation. Curr Biol 12(15):1279–1286

    CAS  Google Scholar 

  139. Schimmel P, Tao J, Hill J (1998) Aminoacyl tRNA synthetases as targets for new anti-infectives. FASEB J 12(15):1599–1609

    CAS  Google Scholar 

  140. Hurdle JG, O’Neill AJ, Chopra I (2005) Prospects for aminoacyl-tRNA synthetase inhibitors as new antimicrobial agents. Antimicrob Agents Chemother 49(12):4821–4833. doi:10.1128/AAC.49.12.4821-4833.2005

    CAS  Google Scholar 

  141. Silvian LF, Wang J, Steitz TA (1999) Insights into editing from an ile-tRNA synthetase structure with tRNAile and mupirocin. Science 285(5430):1074–1077

    CAS  Google Scholar 

  142. Jiang S, Zeng Q, Gettayacamin M, Tungtaeng A, Wannaying S, Lim A, Hansukjariya P, Okunji CO, Zhu S, Fang D (2005) Antimalarial activities and therapeutic properties of febrifugine analogs. Antimicrob Agents Chemother 49(3):1169–1176. doi:10.1128/AAC.49.3.1169-1176.2005

    CAS  Google Scholar 

  143. Zhou H, Sun L, Yang XL, Schimmel P (2013) ATP-directed capture of bioactive herbal-based medicine on human tRNA synthetase. Nature 494(7435):121–124. doi:10.1038/nature11774

    CAS  Google Scholar 

  144. Kawamura T, Liu D, Towle MJ, Kageyama R, Tsukahara N, Wakabayashi T, Littlefield BA (2003) Anti-angiogenesis effects of borrelidin are mediated through distinct pathways: threonyl-tRNA synthetase and caspases are independently involved in suppression of proliferation and induction of apoptosis in endothelial cells. J Antibiot 56(8):709–715

    CAS  Google Scholar 

  145. Habibi D, Ogloff N, Jalili RB, Yost A, Weng AP, Ghahary A, Ong CJ (2012) Borrelidin, a small molecule nitrile-containing macrolide inhibitor of threonyl-tRNA synthetase, is a potent inducer of apoptosis in acute lymphoblastic leukemia. Invest New Drugs 30(4):1361–1370. doi:10.1007/s10637-011-9700-y

    CAS  Google Scholar 

  146. Moss SJ, Carletti I, Olano C, Sheridan RM, Ward M, Math V, Nur EAM, Brana AF, Zhang MQ, Leadlay PF, Mendez C, Salas JA, Wilkinson B (2006) Biosynthesis of the angiogenesis inhibitor borrelidin: directed biosynthesis of novel analogues. Chem Commun (Camb) (22):2341–2343. doi:10.1039/b602931k

  147. Wilkinson B, Gregory MA, Moss SJ, Carletti I, Sheridan RM, Kaja A, Ward M, Olano C, Mendez C, Salas JA, Leadlay PF, vanGinckel R, Zhang MQ (2006) Separation of anti-angiogenic and cytotoxic activities of borrelidin by modification at the C17 side chain. Bioorg Med Chem Lett 16(22):5814–5817. doi:10.1016/j.bmcl.2006.08.073

    CAS  Google Scholar 

  148. Harisi R, Kenessey I, Olah JN, Timar F, Babo I, Pogany G, Paku S, Jeney A (2009) Differential inhibition of single and cluster type tumor cell migration. Anticancer Res 29(8):2981–2985

    Google Scholar 

  149. Wakabayashi T, Kageyama R, Naruse N, Tsukahara N, Funahashi Y, Kitoh K, Watanabe Y (1997) Borrelidin is an angiogenesis inhibitor; disruption of angiogenic capillary vessels in a rat aorta matrix culture model. J Antibiot 50(8):671–676

    CAS  Google Scholar 

  150. Zeng R, Chen YC, Zeng Z, Liu WQ, Liu XX, Liu R, Qiang O, Li X (2010) Different angiogenesis effect of mini-TyrRS/mini-TrpRS by systemic administration of modified siRNAs in rats with acute myocardial infarction. Heart Vessels 25(4):324–332. doi:10.1007/s00380-009-1200-z

    Google Scholar 

  151. Kim TS, Lee BC, Kim E, Cho D, Cohen EP (2008) Gene transfer of AIMP1 and B7.1 into epitope-loaded, fibroblasts induces tumor-specific CTL immunity, and prolongs the survival period of tumor-bearing mice. Vaccine 26(47):5928–5934. doi:10.1016/j.vaccine.2008.08.051

    CAS  Google Scholar 

  152. Chang SH, Chung YS, Hwang SK, Kwon JT, Minai-Tehrani A, Kim S, Park SB, Kim YS, Cho MH (2012) Lentiviral vector-mediated shRNA against AIMP2-DX2 suppresses lung cancer cell growth through blocking glucose uptake. Mol Cells 33(6):553–562. doi:10.1007/s10059-012-2269-2

    CAS  Google Scholar 

  153. Won YS, Lee SW (2012) Selective regression of cancer cells expressing a splicing variant of AIMP2 through targeted RNA replacement by trans-splicing ribozyme. J Biotechnol 158(1–2):44–49. doi:10.1016/j.jbiotec.2012.01.006

    CAS  Google Scholar 

  154. Thompson DM, Parker R (2009) Stressing out over tRNA cleavage. Cell 138(2):215–219. doi:10.1016/j.cell.2009.07.001

    CAS  Google Scholar 

  155. Mei Y, Yong J, Liu H, Shi Y, Meinkoth J, Dreyfuss G, Yang X (2010) tRNA binds to cytochrome c and inhibits caspase activation. Mol Cell 37(5):668–678. doi:10.1016/j.molcel.2010.01.023

    CAS  Google Scholar 

  156. Nechushtan H, Kim S, Kay G, Razin E (2009) Chapter 1: the physiological role of lysyl tRNA synthetase in the immune system. Adv Immunol 103:1–27. doi:10.1016/S0065-2776(09)03001-6

    CAS  Google Scholar 

  157. Jonker R, Engelen MP, Deutz NE (2012) Role of specific dietary amino acids in clinical conditions. Br J Nutr 108(Suppl 2):S139–S148. doi:10.1017/S0007114512002358

    CAS  Google Scholar 

  158. Townsend KN, Hughson LR, Schlie K, Poon VI, Westerback A, Lum JJ (2012) Autophagy inhibition in cancer therapy: metabolic considerations for antitumor immunity. Immunol Rev 249(1):176–194. doi:10.1111/j.1600-065X.2012.01141.x

    CAS  Google Scholar 

  159. Liu Q, Thoreen C, Wang J, Sabatini D, Gray NS (2009) mTOR mediated anti-cancer drug discovery. Drug Discov Today Ther Strateg 6(2):47–55. doi:10.1016/j.ddstr.2009.12.001

    CAS  Google Scholar 

  160. Silvera D, Formenti SC, Schneider RJ (2010) Translational control in cancer. Nat Rev Cancer 10(4):254–266. doi:10.1038/nrc2824

    CAS  Google Scholar 

  161. Li R, Guan MX (2010) Human mitochondrial leucyl-tRNA synthetase corrects mitochondrial dysfunctions due to the tRNALeu(UUR) A3243G mutation, associated with mitochondrial encephalomyopathy, lactic acidosis, and stroke-like symptoms and diabetes. Mol Cell Biol 30(9):2147–2154. doi:10.1128/MCB.01614-09

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nam Hoon Kwon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kim, D., Kwon, N.H., Kim, S. (2013). Association of Aminoacyl-tRNA Synthetases with Cancer. In: Kim, S. (eds) Aminoacyl-tRNA Synthetases in Biology and Medicine. Topics in Current Chemistry, vol 344. Springer, Dordrecht. https://doi.org/10.1007/128_2013_455

Download citation

Publish with us

Policies and ethics