Skip to main content

Transition Path Sampling Simulations of Biological Systems

  • Chapter
  • First Online:
Atomistic Approaches in Modern Biology

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 268))

Abstract

Transition path sampling is a computational method for the simulation of rare but important events occurring in complex systems. Based on a statistical mechanics in trajectory space, transition path sampling can be applied to identify mechanisms and determine rate constants. Here we review the basic ideas and algorithms of transition path sampling and discuss some recent applications of this methodology to problems in molecular biology including protein folding, enzyme catalysis, and processes occurring in lipid bilayers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

DPS:

Discrete path sampling

FFS:

Forward flux sampling

MC:

Monte Carlo

MD:

Molecular dynamics

TIS:

Transition interface sampling

TPS:

Transition path sampling

TS:

Transition state

TSE:

Transition state ensemble

TST:

Transition state theory

References

  1. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2002) Molecular biology of the cell, 4th edn. Garland Science, New York

    Google Scholar 

  2. Karplus M (ed) (2002) Special issue on molecular dynamics simulations of biomolecules. Acc Chem Res 35:321

    CAS  Google Scholar 

  3. Eyring H (1935) J Chem Phys 3:107

    CAS  Google Scholar 

  4. Wigner E (1938) Trans Faraday Soc 34:29

    CAS  Google Scholar 

  5. Keck JC (1962) Discuss Faraday Soc 33:173

    Google Scholar 

  6. Bennett CH (1977) In: Christofferson R (ed) Algorithms for chemical computations, ACS Symposium series no. 46. Am Chem Soc, Washington DC

    Google Scholar 

  7. Chandler D (1978) J Chem Phys 68:2959

    CAS  Google Scholar 

  8. Torrie GM, Valleau JP (1977) J Comput Phys 23:187

    Google Scholar 

  9. Kirkwood J (1935) J Chem Phys 3:300

    CAS  Google Scholar 

  10. Carter EA, Ciccotti G, Hynes JT, Kapral R (1989) Chem Phys Lett 156:472

    CAS  Google Scholar 

  11. Garcia-Viloca M, Gao J, Karplus M, Truhlar DG (2004) Science 303:186

    CAS  Google Scholar 

  12. Lazaridis T, Paulaitis ME (1994) J Am Chem Soc 116:1546

    CAS  Google Scholar 

  13. Roux B, Karplus M (1991) J Phys Chem 95:4856

    CAS  Google Scholar 

  14. Truhlar DG, Garrett BC (1984) Ann Rev Phys Chem 35:159

    CAS  Google Scholar 

  15. Cerjan CJ, Miller WH (1981) J Chem Phys 75:2800

    CAS  Google Scholar 

  16. Doye JPK, Wales DJ (1997) Z Phys D 40:194

    CAS  Google Scholar 

  17. Munro LJ, Wales DJ (1999) Phys Rev B 59:3969

    CAS  Google Scholar 

  18. Wales DJ (2002) Mol Phys 100:3285

    CAS  Google Scholar 

  19. Wales DJ (1005) Phys Biol 2:S86

    Google Scholar 

  20. Evans DA, Wales DJ (2003) J Chem Phys 119:9947

    CAS  Google Scholar 

  21. Evans DA, Wales DJ (2004) J Chem Phys 121:1080

    CAS  Google Scholar 

  22. Deuflhard P, Huisinga W, Fischer A, Schütte Ch (2000) Lin Alg Appl 315:39

    Google Scholar 

  23. Elmer SP, Park S, Pande VS (2005) J Chem Phys 123:114902

    Google Scholar 

  24. Voter AF (1998) Phys Rev B 57:R13985

    CAS  Google Scholar 

  25. Shirts MR, Pande VS (2001) Phys Rev Lett 86:4983

    CAS  Google Scholar 

  26. Pande VS, Baker I, Chapman J, Elmer SP, Khaliq S, Larson SM, Rhee YM, Shirts MR, Snow CD, Sorin EJ, Zagrovic B (2003) Biopolymers 68:91

    CAS  Google Scholar 

  27. Voter AF (1997) Phys Rev Lett 78:3907

    Google Scholar 

  28. Hamelberg D, McCammon JA (2005) J Am Chem Soc 127:13778

    CAS  Google Scholar 

  29. Grubmüller H (1995) Phys Rev E 52:2893

    Google Scholar 

  30. Schulze BG, Grubmüller H, Evanseck JD (2000) J Am Chem Soc 122:8700

    CAS  Google Scholar 

  31. Huber T, Torda AE, van Gunsteren WF (1994) J Comput-Aided Mol Design 8:695

    CAS  Google Scholar 

  32. Laio A, Parrinello M (2002) Proc Natl Acad Sci USA 99:12562

    CAS  Google Scholar 

  33. Ensing B, de Vivo M, Liu Z, Moore P, Klein ML (2006) Acc Chem Res 39:73

    CAS  Google Scholar 

  34. Ceccarelli M, Danelon C, Laio A, Parrinello M (2004) Biophys J 87:58

    CAS  Google Scholar 

  35. Hummer G, Kevrekidis IG (2003) J Chem Phys 118:10762

    CAS  Google Scholar 

  36. Pratt LR (1986) J Chem Phys 85:5045

    CAS  Google Scholar 

  37. Elber R, Ghosh A, Cardenas A, Stern H (2004) Adv Chem Phys 126:123 (2004)

    Google Scholar 

  38. Passerone D, Parrinello M (2001) Phys Rev Lett 87:108302

    CAS  Google Scholar 

  39. Elber R, Karplus M (1987) Chem Phys Lett 139:375

    CAS  Google Scholar 

  40. Sevick EM, Bell AT, Theodorou DN (1993) J Chem Phys 98:3196

    CAS  Google Scholar 

  41. Voter AF (1997) Phys Rev Lett 78:3908

    CAS  Google Scholar 

  42. Gillilan RE, Wilson KR (1996) J Chem Phys 105:9299

    Google Scholar 

  43. Henkelman G, Johannesson G, Jonsson H (2000) In: Schwartz SD (ed) Progress on theoretical chemistry and physics. Kluwer Academic, Dordrecht, The Netherlands

    Google Scholar 

  44. Mathews DH, Case DA (2006) J Mol Biol 357:1683

    CAS  Google Scholar 

  45. E W, Ren W, Vanden-Eijnden E (2002) Phys Rev B 66:052301

    Google Scholar 

  46. E W, Ren W, Vanden-Eijnden E (2005) J Phys Chem 109:6688

    CAS  Google Scholar 

  47. Ren W, Vanden-Eijnden E, Maragakis P, E W (2005) J Chem Phys 123:134109

    Google Scholar 

  48. Dellago C, Bolhuis PG, Csajka FS, Chandler D (1998) J Chem Phys 108:1964

    CAS  Google Scholar 

  49. Dellago C, Bolhuis PG, Geissler PL (2002) Adv Chem Phys 123:1

    CAS  Google Scholar 

  50. Chandler D (1987) Introduction to modern statistical mechanics. Oxford University Press, New York

    Google Scholar 

  51. Frenkel D, Smit B (2002) Understanding molecular simulation, 2nd edn. Academic, San Diego, CA

    Google Scholar 

  52. Binder K, Heermann D (2002) Monte Carlo simulation in statistical physics. Springer, Berlin Heidelberg New York

    Google Scholar 

  53. Bolhuis PG, Chandler D, Dellago C, Geissler PL (2002) Ann Rev Phys Chem 53:291

    CAS  Google Scholar 

  54. Dellago C, Chandler D (2002) Bridging the time scale gap with transition path sampling. In: Nielaba P, Mareschal M, Ciccotti G (eds) Molecular simulation for the next decade. Springer, Berlin Heidelberg New York, p 321

    Google Scholar 

  55. Dellago C (2005) Transition Path Sampling. In: Yip S (ed) Handbook of materials modeling. Springer, Berlin Heidelberg New York, p 1585

    Google Scholar 

  56. Dellago C (2007) Transition path sampling and the calculation of free energies.In: Chipot C, Pohorille A (eds) Free energy calculations: Theory and applications in chemistry and biology. Springer series in chemical physics, vol 86. Springer, Berlin Heidelberg New York (in press)

    Google Scholar 

  57. Dellago C, Bolhuis PG, Chandler D (1998) J Chem Phys 108:9263

    Google Scholar 

  58. Bolhuis PG, Dellago C, Chandler D (1998) Faraday Discuss 110:421

    CAS  Google Scholar 

  59. Car R, Parrinello M (1985) Phys Rev Lett 55:2471

    CAS  Google Scholar 

  60. Nosé S (1984) J Chem Phys 81:511

    Google Scholar 

  61. Nosé S (1984) Mol Phys 52:255

    Google Scholar 

  62. Hoover WG (1985) Phys Rev A 31:1695

    Google Scholar 

  63. Hoover WG, Ladd AJC, Moran B (1982) Phys Rev Lett 48:1818

    CAS  Google Scholar 

  64. Evans DJ (1983) J Chem Phys 78:3297

    CAS  Google Scholar 

  65. van Erp TS, Moroni D, Bolhuis PG (2003) J Chem Phys 118:7762

    Google Scholar 

  66. Bolhuis PG (2003) J Phys Cond Matter 15:S113

    CAS  Google Scholar 

  67. Onsager L (1938) Phys Rev 54:554

    CAS  Google Scholar 

  68. Klosek MM, Matkowsky BJ, Schuss Z (1991) Ber Bunsen Phys Chem 95:331

    CAS  Google Scholar 

  69. Pande V, Grosberg AY, Tanaka T, Shakhnovich EI (1998) J Chem Phys 108:334

    Google Scholar 

  70. Hummer G (2004) J Chem Phys 120:516

    CAS  Google Scholar 

  71. Best RB, Hummer G (2005) Proc Natl Acad Sci USA 102:6732

    CAS  Google Scholar 

  72. Bolhuis PG (2003) Proc Natl Acad Sci USA 100:12129

    CAS  Google Scholar 

  73. Bolhuis PG (2005) Biophys J 88:50

    CAS  Google Scholar 

  74. Allen R, Warren PB, ten Wolde P (2005) Phys Rev Lett 94:018104

    Google Scholar 

  75. Qiu D, Shenkin PS, Hollinger FP, Still EC (1997) J Phys Chem A 101:3005

    CAS  Google Scholar 

  76. Lazaridis T, Karplus M (1999) Prot Struct Func Gen 35:133

    CAS  Google Scholar 

  77. Taketomi H, Ueda Y, Go N (1975) Int J Pept Protein Res 7:445

    Article  CAS  Google Scholar 

  78. Clementi C, Garcia AE, Onuchic JN (2003) J Mol Biol 326:933

    CAS  Google Scholar 

  79. Liwo A, Khalili M, Scheraga HA (2005) Proc Natl Acad Sci USA 102:2362

    CAS  Google Scholar 

  80. van Erp TS (2006) Condens Mat, abstract cond-mat/0605260

    Google Scholar 

  81. Moroni D, Bolhuis PG, van Erp TS (2004) J Chem Phys 120:4055

    CAS  Google Scholar 

  82. Faradjian AK, Elber R (2004) J Chem Phys 120:10880

    CAS  Google Scholar 

  83. Bolhuis PG, Dellago C, Chandler D (2000) Proc Natl Acad Sci USA 97:5877

    CAS  Google Scholar 

  84. Maragliano L, Fischer A, Vanden-Eijnden E, Ciccotti G (2006) J Chem Phys 125:024106

    Google Scholar 

  85. Ma A, Dinner AR (2005) J Phys Chem B 109:6769

    CAS  Google Scholar 

  86. McCormick TA, Chandler D (2003) J Phys Chem B 107:2796

    CAS  Google Scholar 

  87. Hagan MF, Dinner AR, Chandler D, Chakraborty AK (2003) Proc Natl Acad Sci USA 100:13922

    CAS  Google Scholar 

  88. Dobson CM (2004) Semin Cell Dev Biol 15:3

    CAS  Google Scholar 

  89. Fersht A (1999) Structure and mechanism in protein science. Freeman, New York

    Google Scholar 

  90. Cheung MS, Chavez LL, Onuchic JN (2004) Polymer 45:547

    CAS  Google Scholar 

  91. Kubelka J, Hofrichter J, Eaton WA (2004) Curr Opin Struc Biol 14:76

    CAS  Google Scholar 

  92. Mirny L, Shakhnovich E (2001) Annu Rev Bioph Biom 30:361

    CAS  Google Scholar 

  93. Shea JE, Brooks CL (2001) Annu Rev Phys Chem 52:499

    CAS  Google Scholar 

  94. Gnanakaran S et al. (2003) Curr Opin Struc Biol 13:168

    CAS  Google Scholar 

  95. Snow CD, Sorin EJ, Rhee YM, Pande V (2005) Annu Rev Biophys Biomol Struct 34:43

    CAS  Google Scholar 

  96. Bolhuis PG (2006) Sampling kinetic protein folding pathways using all atom models. In: Landau DP, Lewis SP, Schüttler H-B (eds) Computer simulations in condensed matter: from materials to chemical biology. Springer proceedings in physics. Springer, Berlin Heidelberg New York (in press)

    Google Scholar 

  97. Eastman P, Gronbech-Jensen N, Doniach S (2001) J Chem Phys 114:3823

    CAS  Google Scholar 

  98. Elber R, Ghosh A, Cardenas A, Stern H (2003) Adv Chem Phys 126:93

    CAS  Google Scholar 

  99. ten Wolde PR, Chandler D (2002) Proc Natl Acad Sci USA 99:6539

    CAS  Google Scholar 

  100. Pande VS, Rokhsar DS (1999) Proc Natl Acad Sci USA 96:9062

    CAS  Google Scholar 

  101. Roccatano D, Amadei A, Di Nola A, Berendsen HJC (1999) Protein Sci 8:2130

    CAS  Google Scholar 

  102. Garcia AE, Sanbonmatsu KY (2001) Proteins 42:345

    CAS  Google Scholar 

  103. Zhou RH, Berne BJ, Germain R (2001) Proc Natl Acad Sci USA 98:14931

    CAS  Google Scholar 

  104. Chandler D (1978) J Chem Phys 68:2959

    CAS  Google Scholar 

  105. Bennett CH (1977) In: Christofferson R (ed) Algorithms for chemical computations: ACS Symposium series No 46. Am Chem Soc, Washington DC

    Google Scholar 

  106. Evans DA, Wales DJ (2004) J Chem Phys 121:1080

    CAS  Google Scholar 

  107. Juraszek J, Bolhuis PG (2006) Proc Natl Acad Sci USA (in press)

    Google Scholar 

  108. Rhee YM et al. (2004) Proc Natl Acad Sci USA 101:6456

    CAS  Google Scholar 

  109. Radhakrishnan R, Schlick T (2004) Proc Natl Acad Sci USA 101:5970

    CAS  Google Scholar 

  110. Radhakrishnan R, Yang LJ, Arora K, Schlick T (2004) Biophys J 86:34A

    Google Scholar 

  111. Radhakrishnan R, Schlick T (2005) J Am Chem Soc 127:13245

    CAS  Google Scholar 

  112. Moroni D, van Erp TS, Bolhuis PG (2005) Phys Rev E 71:056709

    Google Scholar 

  113. Basner JE, Schwartz SD (2005) J Am Chem Soc 127:13822

    CAS  Google Scholar 

  114. Goetz R, Lipowsky R (1998) J Chem Phys 108:7397

    CAS  Google Scholar 

  115. Smondyrev AM, Berkowitz ML (1999) J Comput Chem 20:531

    CAS  Google Scholar 

  116. Marrink SJ, Jähnig F, Berendsen HJC (1996) Biophys J 71:632

    Article  CAS  Google Scholar 

  117. Bemporad D, Essex JW, Luttmann C (2004) J Phys Chem B 108:4875

    CAS  Google Scholar 

  118. Marti J, Csajka FS (2004) Phys Rev E 69:061918

    Google Scholar 

  119. Marti J (2004) J Phys: Condens Mat 16:5669

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Dellago .

Editor information

Markus Reiher

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dellago, C., Bolhuis, P.G. (2006). Transition Path Sampling Simulations of Biological Systems. In: Reiher, M. (eds) Atomistic Approaches in Modern Biology. Topics in Current Chemistry, vol 268. Springer, Berlin, Heidelberg . https://doi.org/10.1007/128_085

Download citation

Publish with us

Policies and ethics