Skip to main content

Immobilization of Oligonucleotides for Biochemical Sensing by Self-Assembled Monolayers: Thiol-Organic Bonding on Gold and Silanization on Silica Surfaces

  • Chapter
  • First Online:
Immobilisation of DNA on Chips I

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 260))

Abstract

The covalent immobilization of biomolecules on surfaces is of great interest for many medical and bioanalytical applications. Currently, there is a wide range of procedures available for the modification of surfaces to achieve covalent immobilization. Self-assembled monolayers (SAMs) are easy to generate, offer a high level of flexibility and can be precisely modified on a molecular level. Therefore, the use of SAMs for various fields in research and commercial applications is increasing fast. One of the most interesting applications is the utilization of such layers for the attachment of biomolecules. The emphasis of this review is the discussion of different aspects of uniform, mixed, and functionalized monolayers regarding their use for the immobilization of biological recognition molecules such as oligonucleotides (DNA, RNA) in comparison to proteins (especially antibodies and receptor molecules) for bioanalytical applications. In doing so, we focus on the generation of self-organizing monolayers either on smooth gold surfaces by attachment of thiol compounds or on silica surfaces by silanization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

Å:

angstrom (metric unit)---Ten billion angstroms equal 1 meter

APTMS:

3-aminopropyltrimethoxysilane

APTES:

3-aminopropyltriethoxysilane

AFM:

atomic force microscopy

ELISA:

enzyme-linked immunosorbent assay

FMOC:

9-fluorenylmethoxycarbonyl

FT-IR:

Fourier transform infrared spectroscopy

GMBS:

N-(γ-maleimidobutyryloxy)succinimide ester

HSAB:

N-hydroxysuccinimidyl-4-azidobenzoic acid

NHS:

N-hydroxysuccinimide ester

PEG:

poly(ethylene glycol)

QCM:

quartz crystal microbalance

SAM:

self-assembled monolayer

SCE:

saturated calomel electrode

SNOM:

scanning near field optical microscopy

SPM:

scanning probe microscopy

SPR:

surface plasmon resonance

STM:

scanning tunneling microscopy

Sulfo-SMCC:

sulfosuccinimidyl 4-N-maleimidomethyl cyclohexane-1-carboxylate

THF:

tetrahydrofuran

TMOS:

tetramethylorthosilicate

XPS:

X-ray photoelectron spectroscopy

References

  1. Aqua T, Naaman R, Daube SS (1993) Langmuir 19:10573

    Google Scholar 

  2. Nuzzo RG, Dubois LH, Allara DL (1990) J Am Chem Soc 112:558

    Article  CAS  Google Scholar 

  3. Wagner P, Hegner M, Kernen P, Zaugg F, Semenza G (1996) Biophys J 70:2052

    Article  CAS  Google Scholar 

  4. Keller H, Schrepp W, Fuchs H (1992) Thin Solid Films 210=211:799

    Article  Google Scholar 

  5. Finklea HO, Avery S, Lynch M, Furtsch T (1987) Langmuir 3:409

    Article  CAS  Google Scholar 

  6. Riepl M, Wolfbei OS, Mirsky M (1999) Mikrochim Acta 131:29

    CAS  Google Scholar 

  7. Schreiber F (2000) Prog Surf Sci 65:151

    Article  CAS  Google Scholar 

  8. Widrich CA, Chung C, Porter MD (1991) J Electroanal Chem 310:335

    Google Scholar 

  9. Doblhofer K (1992) Langmuir 8:1811

    Article  CAS  Google Scholar 

  10. Porter MD, Bright TB, Allara DL (1987) J Am Chem Soc 109:3559

    CAS  Google Scholar 

  11. Kepley LJ, Crooks RM, Ricco AJ (1992) Anal Chem 64:3191

    Article  CAS  Google Scholar 

  12. Chidsay CED, Loiacono DN (1990) Langmuir 6:682

    Google Scholar 

  13. Zolk M, Eisert F, Pipper J, Herrwerth S, Eck W, Buck M, Grunze M (2000) Langmuir 16:5849

    Article  CAS  Google Scholar 

  14. Brockmann JM, Frutos AG, Corn RM (1999) J Am Chem Soc 121:8044

    Google Scholar 

  15. Mrksich M, Sigal GB, Whitesides GM (1995) Langmuir 11:4383

    Article  CAS  Google Scholar 

  16. Bain CD, Whitesides GM (1989) J Am Chem Soc 111:7164

    CAS  Google Scholar 

  17. Herne TH, Tarlov MJ (1997) J Am Chem Soc 119:8916

    Article  CAS  Google Scholar 

  18. Peterson AW, Heaton RJ, Georgiadis RM (2001) Nucl Acid Res 29:5163

    CAS  Google Scholar 

  19. Balachander N et al (1990) Langmuir 6:1621

    Article  CAS  Google Scholar 

  20. Sagiv J (1980) J Am Chem Soc 102:92

    Article  CAS  Google Scholar 

  21. PCT patent WO 99=20640 (1999)

    Google Scholar 

  22. Bierbaum K, Kinzler M, Wöll C, Grunze M, Hähner G, Heid S, Effenberger F (1995) Langmuir 11:512

    CAS  Google Scholar 

  23. Horr TJ, Arora Ps (1997) Colloids Surf A 126:113

    CAS  Google Scholar 

  24. Hu M, Noda S, Okubo T, Yamaguchi Y, Komiyama H (2001) Appl Surf Sci 18:307

    Google Scholar 

  25. Cras JJ, Rowe-Taitt CA, Nivens DA, Ligler FS (1999) Biosens Bioelectron 14:683

    Article  CAS  Google Scholar 

  26. Halliwell CM, Cass AEG (2001) Anal Chem 73:2476

    Article  CAS  Google Scholar 

  27. Möller R, Csáki A, Köhler M, Fritsche W (2000) Nucl Acids Res 28:1

    Google Scholar 

  28. Naviroj S, Culler R, Koenig JL, Ishida H (1984) J Colloid Interface Sci 97(2):308

    Article  CAS  Google Scholar 

  29. Vandenberg E, Elwing H, Askendal A, Lundström I (1991) J Colloid Interface Sci 143:327

    Article  CAS  Google Scholar 

  30. www.wacker.com: Geniosile ®

    Google Scholar 

  31. Saal K, Tätte T, Kink I, Kurg A, Lõhmus R, Mäeorg U, Rinken A, Lõhmus A (2003) Surf Sci 532–535:1085

    Google Scholar 

  32. Hermanson GT (1996) Bioconjugate Techniques. Academic Press, San Diego

    Google Scholar 

  33. Hang CT, Guiseppi-Elie A (2004) Bios Bioelectron 19:1537

    CAS  Google Scholar 

  34. Rusin KM, Fare TL, Stemple JZ (1992) Biosens Bioelectron 7:367

    Article  CAS  Google Scholar 

  35. Berre LV, Trevisiol E, Dagkessamanskaia A, Sokol S, Caminade AM, Francois J (2003) Nuc Acid Res 31:16

    Google Scholar 

  36. Mattson G et al (1993) Mol Bio Rep 17:167–183

    CAS  Google Scholar 

  37. Radtke SM, Alocilja EC (2005) Biosens Bioelectron 20:1662

    Google Scholar 

  38. Berggren B, Stalhandske P, Brundell J, Johansson G (1999) Electronanalysis 11:156

    CAS  Google Scholar 

  39. Schumaker-Parry JS, Zaraie MH, Aebersold R, Campbell CT (2004) Anal Chem 76:918

    Google Scholar 

  40. Schmitt FJ, Häussling L, Ringsdorf H, Knoll W (1992) Thin Solid Films 210=211:815

    Google Scholar 

  41. Spinke J, Liley M, Schmitt FJ, Guder HJ, Angermaier L, Knoll W (1993) J Chem Phys 99:7012

    Article  CAS  Google Scholar 

  42. US Patent 4,656,252; Anal Biochem (2002) 308:343

    Google Scholar 

  43. Mader C, Huber C, Moll D, Sleytr UB, Sára M (2004) J Bacteriol 186:1758

    CAS  Google Scholar 

  44. Pleschberger M, Saerens D, Weigert S, Sleytr UB, Muyldermans S, Sára M, Egelseer EM (2004) Bioconj Chem 15(3):664

    CAS  Google Scholar 

  45. Glenn JHD, Bowden EF (1996) Chem Lett 339

    Google Scholar 

  46. Mrksich M, Grunwell JR, Whitesides GM (1995) J Am Chem Soc 117:12009

    CAS  Google Scholar 

  47. Shimizu K et al (1992) Langmuir 8:1385

    Google Scholar 

  48. Schneider TW, Buttry DA (1993) J Am Chem Soc 115:12391

    CAS  Google Scholar 

  49. Ohtsuka T, Sato Y, Uosaki K (1994) Langmuir 10:3658

    Article  CAS  Google Scholar 

  50. Bain C, Evall J, Whitesides GM (1989) J Am Chem Soc 111:7155

    CAS  Google Scholar 

  51. Sato Y, Ye S, Haba T, Uosaki K (1996) Langmuir 12:2726

    Article  CAS  Google Scholar 

  52. Sato Y, Shimizu K, Yagi I, Uosaki K (1994) Bull Chem Soc Jpn 67:21

    CAS  Google Scholar 

  53. Bryan MA et al (1991) J Am Chem Soc 113:8284

    Article  Google Scholar 

  54. Schonenberger C et al (1995) J Phys Chem 99:3259

    Google Scholar 

  55. Wibur JL (1995) Langmuir 11:825

    Google Scholar 

  56. Kienberger F, Mueller H, Pastushenko V, Hinterdorfer P (2004) EMBO reports 5:579

    Article  CAS  Google Scholar 

  57. Bain CD et al (1988) J Am Chem Soc 110:3665

    CAS  Google Scholar 

  58. Laibinis PE et al (1991) J Phy Chem 95:7017

    CAS  Google Scholar 

  59. Finklea HO (1996) In: Electroanalytical Chemistry: A Series of Advances, Vol 19. Marcel Dekker, New York p 110

    Google Scholar 

  60. Strong L, Whitesides GM (1988) Langmuir 4:546

    Article  CAS  Google Scholar 

  61. Karpovich DS, Blanchard GJ (1994) Langmuir 10:3315

    Article  CAS  Google Scholar 

  62. Nuzzo RG, Zegarski BR, Dubois LH (1987) J Am Chem Soc 109:733

    CAS  Google Scholar 

  63. Truong KD, Rowntree PA (1995) Prog Surf Sci 50:207

    Article  CAS  Google Scholar 

  64. Bain CD, Troughton EB, Tao YT, Evall J, Whitesides GM, Nuzzo RG (1989) J Am Chem Soc 111:321

    CAS  Google Scholar 

  65. Tiefenauer L, Ros R (2002) Colloid Surf B 23(2):95

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Luderer .

Editor information

Christine Wittmann

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Luderer, F., Walschus, U. Immobilization of Oligonucleotides for Biochemical Sensing by Self-Assembled Monolayers: Thiol-Organic Bonding on Gold and Silanization on Silica Surfaces. In: Wittmann, C. (eds) Immobilisation of DNA on Chips I. Topics in Current Chemistry, vol 260. Springer, Berlin, Heidelberg. https://doi.org/10.1007/128_003

Download citation

Publish with us

Policies and ethics