Skip to main content

A Semi-supervised Learning Approach to Object Recognition with Spatial Integration of Local Features and Segmentation Cues

  • Chapter
Toward Category-Level Object Recognition

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4170))

Abstract

This chapter presents a principled way of formulating models for automatic local feature selection in object class recognition when there is little supervised data. Moreover, it discusses how one could formulate sensible spatial image context models using a conditional random field for integrating local features and segmentation cues (superpixels). By adopting sparse kernel methods and Bayesian model selection and data association, the proposed model identifies the most relevant sets of local features for recognizing object classes, achieves performance comparable to the fully supervised setting, and consistently outperforms existing methods for image classification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agarwal, S., Roth, D.: Learning a sparse representation for object detection. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2353, pp. 113–127. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  2. Andrews, S., Tsochantaridis, I., Hofmann, T.: Multiple instance learning with generalized support vector machines. In: Proceedings of the AAAI National Conference on Artificial Intelligence (2002)

    Google Scholar 

  3. Bernardo, J.M., Smith, A.F.M.: Bayesian Theory. John Wiley and Sons, Chichester (2000)

    MATH  Google Scholar 

  4. Carbonetto, P., de Freitas, N., Gustafson, P., Thompson, N.: Bayesian feature weighting for unsupervised learning, with application to object recognition. In: Proceedings of the Workshop on Artificial Intelligence and Statistics (2003)

    Google Scholar 

  5. Carbonetto, P., de Freitas, N., Barnard, K.: A Statistical model for general contextual object recognition. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3021. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  6. Celeux, G., Hurn, M., Robert, C.P.: Computational and inferential difficulties with mixture posterior distributions. Journal of the American Statistical Association 95, 957–970 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  7. Csurka, G., Dance, C.R., Fan, L., Willamowski, J., Bray, C.: Visual categorization with bags of keypoints. In: Bülthoff, H.H., Lee, S.-W., Poggio, T.A., Wallraven, C. (eds.) BMCV 2002. LNCS, vol. 2525, pp. 273–281. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  8. Dietterich, T.G., Lathrop, R.H., Lozano-Perez, T.: Solving the multiple instance learning with axis-parallel rectangles. Artificial Intelligence 89(1), 31–71 (1997)

    Article  MATH  Google Scholar 

  9. Dorkó, G., Schmid, C.: Selection of scale invariant neighborhoods for object class recognition. In: Proceedings of the International Conference on Computer Vision (2003)

    Google Scholar 

  10. Duygulu, P., Barnard, K., de Freitas, N., Forsyth, D.A.: Object recognition as machine translation: learning a lexicon for a fixed image vocabulary. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2353, pp. 97–112. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  11. Fergus, R., Perona, P., Zisserman, A.: Object class recognition by unsupervised scale-invariant learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2003)

    Google Scholar 

  12. Hamze, F., de Freitas, N.: From fields to trees. In: Proceedings of the Conference on Uncertainty in Artificial Intelligence (2004)

    Google Scholar 

  13. Hendrik, K., de Freitas, N.: Learning about individuals from group statistics. In: Proceedings of the Conference on Uncertainty in Artificial Intelligence (2005)

    Google Scholar 

  14. Kadir, T., Brady, M.: Scale, saliency and image description. International Journal of Computer Vision 45(2), 83–105 (2001)

    Article  MATH  Google Scholar 

  15. Kück, H., Carbonetto, P., de Freitas, N.: A Constrained semi-supervised learning approach to data association. In: Proceedings of the European Conference on Computer Vision (2004)

    Google Scholar 

  16. Lafferty, J., McCallum, A., Pereira, F.: Conditional random fields. In: Proceedings of the International Conference on Machine Learning (2001)

    Google Scholar 

  17. Leibe, B., Seemann, E., Schiele, B.: Pedestrian detection in crowded scenes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2005)

    Google Scholar 

  18. Lindeberg, T.: Feature detection with automatic scale selection. International Journal of Computer Vision 30(2) (1998)

    Google Scholar 

  19. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60(2), 91–110 (2004)

    Article  Google Scholar 

  20. McFadden, D.: A Method of simulated moments for estimation of discrete response models without numerical integration. Econometrica 57, 995–1026 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  21. Mikolajczyk, K., Schmid, C.: Indexing based on scale invariant interest points. In: Proceedings of the International Conference on Computer Vision (2001)

    Google Scholar 

  22. Mikolajczyk, K., Schmid, C., Zisserman, A.: Human detection based on a probabilistic assembly of robust part detectors. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3021, pp. 69–82. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  23. Mikolajczyk, K., Schmid, C.: A Performance evaluation of local descriptors. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2003)

    Google Scholar 

  24. Mikolajczyk, K., Schmid, C.: Selection of scale-invariant parts for object class recognition. In: Proceedings of the International Conference on Computer Vision (2001)

    Google Scholar 

  25. Miller, T., Berg, A.C., Edwards, J., Maire, M., White, R., Teh, Y.W., Learned-Miller, E., Forsyth, D.A.: Faces and names in the news. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2004)

    Google Scholar 

  26. Opelt, A., Fussenegger, M., Pinz, A., Auer, P.: Weak hypotheses and boosting for generic object detection and recognition. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3022, pp. 71–84. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  27. Ren, X., Malik, J.: Learning a classification model for segmentation. In: Proceedings of the International Conference on Computer Vision (2003)

    Google Scholar 

  28. Serre, T., Wolf, L., Poggio, T.: Object recognition with features inspired by visual cortex. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2005)

    Google Scholar 

  29. Shi, J., Malik, J.: Normalized cuts and image segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (1997)

    Google Scholar 

  30. Tham, S.S., Doucet, A., Kotagiri, R.: Sparse Bayesian learning for regression and classification using Markov Chain Monte Carlo. In: Proceedings of the International Conference on Machine Learning (2002)

    Google Scholar 

  31. Tipping, M.E.: Sparse Bayesian learning and the relevance vector machine. Journal of Machine Learning Research 1, 211–244 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  32. Torralba, A., Murphy, K.P., Freeman, W.T., Rubin, M.A.: Context-based vision system for place and object recognition. In: Proceedings of the International Conference on Computer Vision (2003)

    Google Scholar 

  33. Viola, P., Jones, M.J.: Robust real-time face detection. International Journal of Computer Vision 57(2), 137–154 (2004)

    Article  Google Scholar 

  34. Zhu, X., Ghahramani, Z., Lafferty, J.: Semi-supervised learning using gaussian fields and harmonic functions. In: Proceedings of the International Conference on Machine Learning (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Carbonetto, P., Dorkó, G., Schmid, C., Kück, H., de Freitas, N. (2006). A Semi-supervised Learning Approach to Object Recognition with Spatial Integration of Local Features and Segmentation Cues. In: Ponce, J., Hebert, M., Schmid, C., Zisserman, A. (eds) Toward Category-Level Object Recognition. Lecture Notes in Computer Science, vol 4170. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11957959_15

Download citation

  • DOI: https://doi.org/10.1007/11957959_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-68794-8

  • Online ISBN: 978-3-540-68795-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics