Skip to main content

A Hybrid Genetic Algorithm for 2D FCC Hydrophobic-Hydrophilic Lattice Model to Predict Protein Folding

  • Conference paper
AI 2006: Advances in Artificial Intelligence (AI 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4304))

Included in the following conference series:

Abstract

This paper presents a Hybrid Genetic Algorithm (HGA) for the protein folding prediction (PFP) applications using the 2D face-centred-cube (FCC) Hydrophobic-Hydrophilic (HP) lattice model. This approach enhances the optimal core formation concept and develops effective and efficient strategies to implement generalized short pull moves to embed highly probable short motifs or building blocks and hence forms the hybridized GA for FCC model. Building blocks containing Hydrophobic (H) – Hydrophilic (P or Polar) covalent bonds are utilized such a way as to help form a core that maximizes the |fitness|. The HGA helps overcome the ineffective crossover and mutation operations that traditionally lead to the stuck condition, especially when the core becomes compact. PFP has been strategically translated into a multi-objective optimization problem and implemented using a swing function, with the HGA providing improved performance in the 2D FCC model compared with the Simple GA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, et al.: Blue Gene: A vision for protein science using a petaflop supercomputer. IBM System Journal 40(2) (2001)

    Google Scholar 

  2. Pietzsch, J.: The importance of protein folding, http://www.nature.com/horizon/proteinfolding/background/importance.html

  3. Petit-Zeman, S.: Treating protein folding diseases, http://www.nature.com/horizon/proteinfolding/background/treating.html

  4. Dill, K.A.: Theory for the Folding and Stability of Globular Proteins. Biochem. 24, 1501 (1985)

    Article  Google Scholar 

  5. Backofen, R., Will, S.: A constraint-based approach to fast and exact structure prediction in three-dimensional protein models. Journal of Constraints 11(1), 5–30 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  6. Crescenzi, P., et al.: On the complexity of protein folding (extended abstract). In: ACM, International conference on Computational molecular biology, pp. 597–603 (1998)

    Google Scholar 

  7. Berger, B., Leighton, T.: Protein Folding in the Hydrophobic-Hydrophilic (HP) model is NP-Complete. In: ACM, International conference on Computational molecular biology (1998)

    Google Scholar 

  8. Schiemann, R., Bachmann, M., Janke, W.: Exact Enumeration of Three – Dimensional Lattice Proteins. Elsevier Science, Amsterdam (2005)

    Google Scholar 

  9. Guttmann, A.J.: Self-avoiding walks in constrained and random geometries. In: Chakrabarti, B.K. (ed.) Statistics of Linear Polymers in Disordered Media, pp. 59–101. Elsevier, Amsterdam (2005)

    Chapter  Google Scholar 

  10. Unger, R., Moult, J.: On the Applicability of Genetic Algorithms to Protein Folding. IEEE, 715–725 (1993)

    Google Scholar 

  11. Unger, R., Moult, J.: Genetic Algorithm for Protein Folding Simulations. JMB (1993)

    Google Scholar 

  12. Hoque, M.T., Chetty, M., Dooley, L.S.: A New Guided Genetic Algorithm for 2D Hydrophobic-Hydrophilic Model to Predict Protein Folding. In: 2005 IEEE CEC, pp. 259–266 (2005)

    Google Scholar 

  13. Hoque, M.T., Chetty, M., Dooley, L.S.: A Guided Genetic Algorithm for Protein Folding Prediction Using 3D Hydrophobic-Hydrophilic Model. In: 2006 IEEE WCCI (2006)

    Google Scholar 

  14. Agarwala, R., et al.: Local Rules for Protein Folding on a Triangular Lattice and Generalized Hydrophobicity in the HP Model. J. of Computational Biology 4(2), 275–296 (1997)

    Article  Google Scholar 

  15. Sloane, N.J.A.: Kepler’s Conjecture Confirmed. Nature 395, 435–436 (1998)

    Article  Google Scholar 

  16. Hales, T.C.: A proof of the Kepler conjecture. Annals of Mathematics 162(3), 1065–1185 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  17. Dill, K.A., Fiebig, K.M., Chan, H.S.: Cooperativity in Protein-Folding Kinetics. Proceedings of the National Academy of Sciences USA, Biophysics 90, 1942–1946 (1993)

    Article  Google Scholar 

  18. Shmygelska, A.: Search for Folding Nuclei in Native Protein Structures. Bioinformatics 21, i394–i402 (2005)

    Article  Google Scholar 

  19. Lesh, N., Mitzenmacher, M., Whitesides, S.: A Complete and Effective Move Set for Simplified Protein Folding. In: RECOMB, Berlin (2003)

    Google Scholar 

  20. Backofen, R., Will, S.: Optimally Compact Finite Sphere Packings – Hydrophobic Cores in the FCC. In: CPM 2001. LNCS, pp. 257–272. Springer, Heidelberg (2001)

    Google Scholar 

  21. Koehl, P., Levitt, M.: A brighter future for protein structure prediction. Nature Structural Biology 6, 108–111 (1999)

    Article  Google Scholar 

  22. Unger, R., Moult, J.: Genetic Algorithm for 3D Protein Folding Simulations. In: 5th International Conference on Genetic Algorithms, pp. 581–588 (1993)

    Google Scholar 

  23. Shmygelska, A., Hoos, H.H.: An ant colony optimization algorithm for the 2D and 3D hydrophobic polar protein folding problem. BMC Bioinformatics 6(30) (2005)

    Google Scholar 

  24. Flebig, Dill: Protein Core Assembly Processes. J. Chem. Phys. 98(4), 3475–3487 (1993)

    Article  Google Scholar 

  25. Hart, W., Istrail, S.: HP Benchmarks, http://www.cs.sandia.gov/tech_reports/compbio/tortilla-hp-benchmarks.html

  26. Vose, M.D.: The Simple Genetic Algorithm. MIT Press, Cambridge (1999)

    MATH  Google Scholar 

  27. Digalakis, J.G., Margaritis, K.G.: An experimental Study of Benchmarking Functions for Genetic Algorithms. Intern. J. Computer Math. 79(4), 403–416 (2002)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hoque, M.T., Chetty, M., Dooley, L.S. (2006). A Hybrid Genetic Algorithm for 2D FCC Hydrophobic-Hydrophilic Lattice Model to Predict Protein Folding. In: Sattar, A., Kang, Bh. (eds) AI 2006: Advances in Artificial Intelligence. AI 2006. Lecture Notes in Computer Science(), vol 4304. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11941439_91

Download citation

  • DOI: https://doi.org/10.1007/11941439_91

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-49787-5

  • Online ISBN: 978-3-540-49788-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics