Skip to main content

A Short Verifier-Local Revocation Group Signature Scheme with Backward Unlinkability

  • Conference paper
Advances in Information and Computer Security (IWSEC 2006)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 4266))

Included in the following conference series:

Abstract

Previously Verifier-Local Revocation (VLR) group signature schemes from bilinear maps were proposed. In VLR schemes, only verifiers are involved in the revocation of a member, while signers are not involved in the revocation. Thus, the schemes are suitable for mobile environments. Furthermore, the previously proposed schemes satisfy an important property, the backward unlinkability. It means that even after a member is revoked, signatures produced by the member before the revocation remain anonymous. This property is needed in case a member leaves voluntarily or in case of a stolen key. In this paper an improved scheme is proposed, where the group signatures are shorter. This is achieved using a different assumption, DLDH assumption, and improving zero-knowledge proofs in the group signatures. The length of the proposed group signatures is about 53% of that of the previous ones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ateniese, G., Camenisch, J., Joye, M., Tsudik, G.: A practical and provably secure coalition-resistant group signature scheme. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 255–270. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  2. Ateniese, G., Song, D., Tsudik, G.: Quasi-efficient revocation of group signatures. In: Blaze, M. (ed.) FC 2002. LNCS, vol. 2357, pp. 183–197. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  3. Bellare, M., Micciancio, D., Warinschi, B.: Foundations of group signatures: Formal definitions, simplified requirements, and a construction based on general assumptions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 614–629. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  4. Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  5. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)

    Google Scholar 

  6. Boneh, D., Shacham, H.: Group signatures with verifier-local revocation. In: Proc. ACM-CCS 2004, pp. 168–177 (2004)

    Google Scholar 

  7. Camenisch, J., Lysyanskaya, A.: Dynamic accumulators and application to efficient revocation of anonymous credentials. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 61–76. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  8. Chaum, D., van Heijst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991)

    Google Scholar 

  9. Furukawa, J., Imai, H.: An efficient group signature scheme from bilinear maps. In: Boyd, C., González Nieto, J.M. (eds.) ACISP 2005. LNCS, vol. 3574, pp. 455–467. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  10. Laguillaumie, F., Paillier, P., Vergnaud, D.: Universally convertible directed signatures. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 682–701. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  11. Miyaji, A., Nakabayashi, M., Takano, S.: New explicit conditions of elliptic curve traces for FR-reduction. IEICE Trans. Fundamentals E84-A(5), 1234–1243 (2001)

    Google Scholar 

  12. Nakanishi, T., Funabiki, N.: Verifier-local revocation group signature schemes with backward unlinkability from bilinear maps. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 533–548. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  13. Nguyen, L., Safavi-Naini, R.: Efficient and provably secure trapdoor-free group signature schemes from bilinear pairings. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 372–386. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  14. Song, D.X.: Practical forward secure group signature schemes. In: Proc. ACM-CCS 2001, pp. 225–234 (2001)

    Google Scholar 

  15. Sujing, Z., Dongdai, L.: A shorter group signature with verifier-location revocation and backward unlinkability. Cryptology ePrint Archive: Report 2006/100 (2006)

    Google Scholar 

  16. Tsudik, G., Xu, S.: Accumulating composites and improved group signing. In: Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 269–286. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nakanishi, T., Funabiki, N. (2006). A Short Verifier-Local Revocation Group Signature Scheme with Backward Unlinkability. In: Yoshiura, H., Sakurai, K., Rannenberg, K., Murayama, Y., Kawamura, S. (eds) Advances in Information and Computer Security. IWSEC 2006. Lecture Notes in Computer Science, vol 4266. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11908739_2

Download citation

  • DOI: https://doi.org/10.1007/11908739_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-47699-3

  • Online ISBN: 978-3-540-47700-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics