Skip to main content

Mind Change Complexity of Inferring Unbounded Unions of Pattern Languages from Positive Data

  • Conference paper
Algorithmic Learning Theory (ALT 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4264))

Included in the following conference series:

Abstract

This paper gives a proof that the class of unbounded unions of languages of regular patterns with constant segment length bound is inferable from positive data with mind change bound between ω ω and \(\omega^{\omega^{\omega}}\). We give a very tight bound on the mind change complexity based on the length of the constant segments and the size of the alphabet of the pattern languages. This is, to the authors’ knowledge, the first time a natural class of languages has been shown to be inferable with mind change complexity above ω ω. The proof uses the notion of closure operators on a class of languages, and also uses the order type of well-partial-orderings to obtain a mind change bound. The inference algorithm presented can be easily applied to a wide range of classes of languages. Finally, we show an interesting connection between proof theory and mind change complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ambainis, A., Jain, S., Sharma, A.: Ordinal Mind Change Complexity of Language Identification. Theoretical Computer Science 220, 323–343 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  2. Angluin, D.: Inductive Inference of Formal Languages from Positive Data. Information and Control 45, 117–135 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  3. Birkhoff, G.: Lattice Theory, 3rd edn. American Mathematical Society (1967)

    Google Scholar 

  4. Brown, D.J., Suszko, R.: Abstract Logics. Dissertationes Mathematicae 102, 9–41 (1973)

    MathSciNet  Google Scholar 

  5. Burris, S., Sankappanavar, H.P.: A Course in Universal Algebra. Springer, Heidelberg (1981)

    MATH  Google Scholar 

  6. Cox, D., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms, 2nd edn. Springer, Heidelberg (1996)

    MATH  Google Scholar 

  7. Friedman, H., Simpson, S.G., Smith, R.L.: Countable Algebra and Set Existence Axioms. Annals of Pure and Applied Logic 25, 141–181 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  8. Freivalds, R., Smith, C.H.: On the Role of Procrastination for Machine Learning. Information and Computation 107, 237–271 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  9. Gallier, J.H.: What’s So Special About Kruskal’s Theorem and the Ordinal Γ0? A survey of some results in proof theory. Annals of Pure and Applied Logic 53, 199–260 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  10. Gold, E.M.: Language Identification in the Limit. Information and Control 10, 447–474 (1967)

    Article  MATH  Google Scholar 

  11. Hasegawa, R.: Well-ordering of Algebras and Kruskal’s Theorem. In: Sato, M., Hagiya, M., Jones, N.D. (eds.) Logic, Language and Computation. LNCS, vol. 792, pp. 133–172. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  12. Higman, G.: Ordering by Divisibility in Abstract Algebras. Proceedings of the London Mathematical Society, Third Series 2, 326–336 (1952)

    Article  MATH  MathSciNet  Google Scholar 

  13. Jain, S., Osherson, D., Royer, J.S., Sharma, A.: Systems That Learn, 2nd edn. MIT Press, Cambridge (1999)

    Google Scholar 

  14. Jain, S., Sharma, A.: Elementary Formal Systems, Intrinsic Complexity, and Procrastination. In: Proceedings of COLT 1996, pp. 181–192 (1996)

    Google Scholar 

  15. Jain, S., Sharma, A.: The Structure of Intrinsic Complexity of Learning. Journal of Symbolic Logic 62, 1187–1201 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  16. Kleene, S.C.: Notations for Ordinal Numbers. Journal of Symbolic Logic 3, 150–155 (1938)

    Article  MATH  Google Scholar 

  17. Kobayashi, S.: Approximate Identification, Finite Elasticity and Lattice Structure of Hypothesis Space. Technical Report, CSIM 96-04, Dept. of Compt. Sci. and Inform. Math., Univ. of Electro- Communications (1996)

    Google Scholar 

  18. Luo, W., Schulte, O.: Mind Change Efficient Learning. In: Auer, P., Meir, R. (eds.) COLT 2005. LNCS, vol. 3559, pp. 398–412. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  19. Motoki, T., Shinohara, T., Wright, K.: The Correct Definition of Finite Elasticity: Corrigendum to Identification of Unions. In: Proceedings of COLT 1991, p. 375 (1991)

    Google Scholar 

  20. Mukouchi, Y.: Containment Problems for Pattern Languages. IEICE Trans. Inform. Systems E75-D, 420–425 (1992)

    Google Scholar 

  21. Sacks, G.E.: Higher Recursion Theory. Springer, Heidelberg (1990)

    MATH  Google Scholar 

  22. Sharma, A., Stephan, F., Ventsov, Y.: Generalized Notions of Mind Change Complexity. Information and Computation 189, 235–262 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  23. Shinohara, T., Arimura, H.: Inductive Inference of Unbounded Unions of Pattern Languages From Positive Data. Theoretical Computer Science 241, 191–209 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  24. Simpson, S.G.: Ordinal Numbers and the Hilbert Basis Theorem. Journal of Symbolic Logic 53, 961–974 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  25. Stephan, F., Ventsov, Y.: Learning Algebraic Structures from Text. Theoretical Computer Science 268, 221–273 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  26. Wright, K.: Identification of Unions of Languages Drawn from an Identifiable Class. In: Proc. 2nd Workshop on Computational Learning Theory, pp. 328–333 (1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

de Brecht, M., Yamamoto, A. (2006). Mind Change Complexity of Inferring Unbounded Unions of Pattern Languages from Positive Data. In: Balcázar, J.L., Long, P.M., Stephan, F. (eds) Algorithmic Learning Theory. ALT 2006. Lecture Notes in Computer Science(), vol 4264. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11894841_13

Download citation

  • DOI: https://doi.org/10.1007/11894841_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-46649-9

  • Online ISBN: 978-3-540-46650-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics