Skip to main content

Automatic Recognition of Landforms on Mars Using Terrain Segmentation and Classification

  • Conference paper
Discovery Science (DS 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4265))

Included in the following conference series:

Abstract

Mars probes send back to Earth enormous amount of data. Automating the analysis of this data and its interpretation represents a challenging test of significant benefit to the domain of planetary science. In this study, we propose combining terrain segmentation and classification to interpret Martian topography data and to identify constituent landforms of the Martian landscape. Our approach uses unsupervised segmentation to divide a landscape into a number of spatially extended but topographically homogeneous objects. Each object is assigned a 12 dimensional feature vector consisting of terrain attributes and neighborhood properties. The objects are classified, based on their feature vectors, into predetermined landform classes. We have applied our technique to the Tisia Valles test site on Mars. Support Vector Machines produced the most accurate results (84.6% mean accuracy) in the classification of topographic objects. An immediate application of our algorithm lies in the automatic detection and characterization of craters on Mars.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Adams, R., Bischof, L.: Seeded Region Growing. IEEE Trans. Pattern Analysis and Machine Intelligence 16(6), 641–647 (1994)

    Article  Google Scholar 

  2. Baatz, M., Schäpe, A.: Multiresolution Segmentation - An Optimization Approach for High Quality Multi-Scale Image Segmentation. In: Strobl, J., et al. (eds.) Angewandte Geographische Informationsverarbeitung, vol. XII, pp. 12–23. Wichmann, Heidelberg (2000)

    Google Scholar 

  3. Barlow, N.G.: Crater Size-Distributions and a Revised Martian Relative Chronology. Icarus 75(2), 285–305 (1988)

    Article  MathSciNet  Google Scholar 

  4. Belongie, S., Carson, C., Greenspan, H., Malik, J.: Color and Texture-based Image Segmentation Using EM and its Application to Content-based Image Retrieval. In: Proc. of Sixth IEEE Int. Conf. Comp. Vision, pp. 675–682 (1998)

    Google Scholar 

  5. Bentley, J.L.: Multidimensional Binary Search Trees Used for Associative Searching. Communications of ACM 18(9), 509–517 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  6. Breiman, L.: Bagging Predictors. Machine Learning 24, 123–140 (1996)

    MATH  MathSciNet  Google Scholar 

  7. Bue, B.D., Stepinski, T.F.: Automated classification of Landforms on Mars. Computers & Geoscience 32(5), 604–614 (2006)

    Article  Google Scholar 

  8. Burl, M.C., Stough, T., Colwell, W., Bierhaus, E.B., Merline, W.J., Chapman, C.: Automated Detection of Craters and Other Geological Features. In: Proc. Int. Symposium on Artificial Intelligence, Robotics and Automation for Space, Montreal, Canada (2001)

    Google Scholar 

  9. Chen, Q., Zhou, C., Luo, J., Ming, D.: Fast Segmentation of High-Resolution Satellite Images Using Watershed Transform Combined with an Efficient Region Merging Approach. In: Klette, R., Žunić, J. (eds.) IWCIA 2004. LNCS, vol. 3322, pp. 621–630. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  10. Cintala, M.J., Head, J.W., Mutch, T.A.: Martian Crater Depth/Diameter Relationship: Comparison with the Moon and Mercury. In: Proc. Lunar Sci. Conf., vol. 7, pp. 3375–3587 (1976)

    Google Scholar 

  11. Cintala, M.J., Mouginis-Mark, P.J.: Martian Fresh Crater Depth: More Evidence for Subsurface Volatiles. Geophys. Res. Lett. 7, 329–332 (1980)

    Article  Google Scholar 

  12. Cooper, G.F., Herskovits, E.: A Bayesian Method for the Induction of Probabilistic Networks from Data. Machine Learning 9(4), 309–347 (1992)

    MATH  Google Scholar 

  13. Deng, Y., Manjunath, B.S.: Unsupervised Segmentation of Color-Texture Regions in Images and Video. IEEE Trans. Pattern Analysis and Machine Intelligence 23(8), 800–810 (2001)

    Article  Google Scholar 

  14. Honda, R., Iijima, Y., Konishi, O.: Mining of Topographic Feature from Heterogeneous Imagery and Its Application to Lunar Craters. In: Arikawa, S., Shinohara, A. (eds.) Progress in Discovery Science. LNCS, vol. 2281, p. 395. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  15. Jing, F., Li, M.J., Zhang, H.J., Zhang, B.: Unsupervised Image Segmentation Using Local Homogeneity Analysis. In: Proc. IEEE International Symposium on Circuits and Systems, pp. II-456–II-459 (2003)

    Google Scholar 

  16. Kim, J.R., Muller, J.-P., van Gasselt, S., Morley, J.G., Neukum, G.: The HRSC Col Team: Automated Crater Detection, A New Tool for Mars Cartography and Chronology. Photogrammetric Engineering & Remote Sensing 71(10), 1205–1217 (2005)

    Google Scholar 

  17. Kohonen, T.: Self-Organizing Maps. Springer, Heidelberg (1995)

    Google Scholar 

  18. Koperski, K., Han, J., Stefanovic, N.: An Efficient two-Step Method for Classification of Spatial Data. In: Proc. Eight Symp. Spatial Data Handling, pp. 45–55 (1998)

    Google Scholar 

  19. Molloy, I., Stepinski, T.F.: Automatic Mapping of Valley Networks on Mars. Computers & Geoscience (submitted, 2006)

    Google Scholar 

  20. Mouginis-Mark, P.J., Garbeil, H., Boyce, J.M., Ui, C.S.E., Baloga, S.M.: Geometry of Martian Impact Craters: First Results from an Iterative Software Package. J. Geophys. Res. 109, E08996 (2004)

    Google Scholar 

  21. Nock, R., Nielsen, F.: Stochastic Region Merging. IEEE Trans. Pattern Analysis and Machine Intelligence 26(11), 1452–1458 (2004)

    Article  Google Scholar 

  22. Rodionova, J.F., Dekchtyareva, K.I., Khramchikhin, A.A., Michael, G.G., Ajukov, S.V., Pugacheva, S.G., Shevchenko, V.V.: Morphological Catalogue of the Craters of Mars. ESA-ESTEC (2000)

    Google Scholar 

  23. Smith, D., Neumann, G., Arvidson, R.E., Guinness, E.A., Slavney, S.: Mars Global Surveyor Laser Altimeter Mission Experiment Gridded Data Record. NASA Planetary Data System, MGS-M-MOLA-5-MEGDR-L3-V1.0 (2003)

    Google Scholar 

  24. Soderblom, L.A., Condit, C.D., West, R.A., Herman, B.M., Kreidler, T.J.: Martian Planetwide Crater Distributions: Implications for Geologic History and Surface Processes. Icarus 22, 239–263 (1974)

    Article  Google Scholar 

  25. Stepinski, T.F., Vilalta, R.: Digital Topography Models for Martian surfaces. IEEE Geoscience and Remote Sensing Letters 2(3), 260–264 (2005)

    Article  Google Scholar 

  26. Vincent, L., Soille, P.: Watersheds in Digital Spaces: An Efficient Algorithm Based on Immersion Simulations. IEEE Trans. Pattern Analysis and Machine Intelligence 13(6), 583–598 (1991)

    Article  Google Scholar 

  27. Vinogradova, T., Burl, M., Mjosness, E.: Training of a Crater Detection Algorithm for Mars Crater Imagery. In: Aerospace Conference Proc. 2002, pp. 7–3211. IEEE, Los Alamitos (2002)

    Google Scholar 

  28. Wetzler, P.G., Enke, B., Merline, W.J., Chapman, C.R., Burl, M.C.: Learning to Detect Small Impact Craters. In: Seventh IEEE Workshops on Computer Vision (WACV/MOTION 2005), vol. 1, pp. 178–184 (2005)

    Google Scholar 

  29. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques, 2nd edn. Morgan Kaufmann, San Francisco (2005)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Stepinski, T.F., Ghosh, S., Vilalta, R. (2006). Automatic Recognition of Landforms on Mars Using Terrain Segmentation and Classification. In: Todorovski, L., Lavrač, N., Jantke, K.P. (eds) Discovery Science. DS 2006. Lecture Notes in Computer Science(), vol 4265. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11893318_26

Download citation

  • DOI: https://doi.org/10.1007/11893318_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-46491-4

  • Online ISBN: 978-3-540-46493-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics