Skip to main content

Extraction of Fuzzy Features for Detecting Brain Activation from Functional MR Time-Series

  • Conference paper
Neural Information Processing (ICONIP 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4234))

Included in the following conference series:

Abstract

We propose methods to extract fuzzy features from fMR time-series in order to detect brain activation. Five discriminating features are automatically extracted from fMRI using a sequence of temporal-sliding-windows. A fuzzy model based on these features is first developed by gradient method training on a set of initial training data and then incrementally updated. The resulting fuzzy activation maps are then combined to provide a measure of strength of activation for each voxel in human brain; a two-way thresholding scheme is introduced to determine actual activated voxels. The method is tested on both synthetic and real fMRI datasets for functional activation detection, illustrating that it is less vulnerable to correlated noise and is able to adapt to different hemodynamic response functions across subjects through incremental learning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ogawa, S., Tank, D., Menon, R.: Intrinsic signal changes accompanying sensory simularion: Functional brain mapping with magnetic resonance imaging. Proc. Nat. Acad. Sci. 89, 5951–5955 (1992)

    Article  Google Scholar 

  2. Friston, K.J., Holmes, A.P., Worsley, K.J., Poline, J.-B., Frith, C.D., Frackowiak, R.S.J.: Statistical parametric maps in functional imaging: A general linear approach. Human Brain Mapping 2, 189–210 (1995)

    Article  Google Scholar 

  3. Vazquez, A.L., Noll, D.C.: Nonlinear aspects of the bold response in functional mri. Human Brain Mapping 40, 249–260 (1998)

    Google Scholar 

  4. Woolrich, M.W., Jenkinson, M., Brady, J.M., Smith, S.M.: Fully bayesian spatio-temporal modeling of fmri data. IEEE trans. on Med. Imag. 24(2), 213–231 (2004)

    Article  Google Scholar 

  5. Bullmore, E., Long, C., Fadili, J., Calvert, G., Zalaya, F., Carpenter, T.A., Brammer, M.: Colored noise and computational inference in neuophysiological (fmri) time series analysis: Resampling mehtods in time and wavelet domains. Human Brain Mapping 12, 61–78 (2001)

    Article  Google Scholar 

  6. Meyer0Baese, A., Wismueller, A., Lange, O.: Comparison of two exploratory data analysis methods for fmri: unsupervised clustering versus independent component analysis. IEEE trans. of Infor. Techno. in Biomed, 387–398 (September 2004)

    Google Scholar 

  7. Andersen, A.H., Gash, D.M., Avison, M.J.: Principal component analysis of the dynamic response measured by fmri. Mgn. Reson. Imag. 17(6), 795–815 (1999)

    Article  Google Scholar 

  8. McKeown, M.J., Makeig, S., Brown, G.G., Jung, T.P., Kindermann, S.S., Bell, A.J., Sejnowski, T.J.: Analysis of fmri data by blind separation into independent spatial components. Human Brain Mapping 6, 160–188 (1998)

    Article  Google Scholar 

  9. Biswal, B., Ulmer, J.: Blind source separation of multiple signal sources of fmri data sets using independent component analysis. Journal of Comput. Assist. Tomogr. 23(2), 265–271 (1999)

    Article  Google Scholar 

  10. Chuang, K., Chiu, M., Lin, C., Chen, J.: Model-free functional mri analysis using kohonen clustering neural network and fuzzy c-means. IEEE Trans. Med. Imag. 18, 1117–1128 (1999)

    Article  Google Scholar 

  11. Ngan, S., Hu, X.: Analysis of functional magnetic resonance imaging data using self-organizing mapping with spatial connectivity. Mgn. Reson. in Med. 41, 939–946 (1999)

    Article  Google Scholar 

  12. Hossein-Zadeh, G.A., Soltanian-Zadeh, H., Ardekani, B.A.: Multiresolution fmri activation detection using translation invariant wavelet transform and statistical analysis based on resampling. IEEE Trans. on Med. Imag. 22(3), 302–314 (2003)

    Article  Google Scholar 

  13. Ross, T.J.: Fuzzy logic with engineering applications, 2nd edn., pp. 213–241. John Wiley, Chichester (2004)

    MATH  Google Scholar 

  14. Rajapakse, J.C., Kruggel, F., Maisog, J.M., von Cramon, D.Y.: Modeling Hemodynamic Response for Analysis of Functional MRI Time-Series. Human Brain Mapping 6, 283–300 (1998)

    Article  Google Scholar 

  15. Wellcome Department of Imaging Neuroscience, Statistical Parametric Mapping (2004), http://www.fil.ion.ucl.ac.uk/spm/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhou, J., Rajapakse, J.C. (2006). Extraction of Fuzzy Features for Detecting Brain Activation from Functional MR Time-Series. In: King, I., Wang, J., Chan, LW., Wang, D. (eds) Neural Information Processing. ICONIP 2006. Lecture Notes in Computer Science, vol 4234. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11893295_108

Download citation

  • DOI: https://doi.org/10.1007/11893295_108

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-46484-6

  • Online ISBN: 978-3-540-46485-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics