Skip to main content

Connectionist Approaches for Predicting Mouse Gene Function from Gene Expression

  • Conference paper
Neural Information Processing (ICONIP 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4232))

Included in the following conference series:

Abstract

Identifying gene function has many useful applications especially in Gene Therapy. Identifying gene function based on gene expression data is much easier in prokaryotes than eukaryotes due to the relatively simple structure of prokaryotes. That is why tissue-specific expression is the primary tool for identifying gene function in eukaryotes. However, recent studies have shown that there is a strong learnable correlation between gene function and gene expression. This paper outlines a new approach for gene function prediction in mouse. The prediction mechanism depends on using Artificial Neural Networks (NN) to predict gene function based on quantitative analysis of gene co-expression. Our results show that neural networks can be extremely useful in this area. Also, we explore clustering of gene functions as a preprocessing step for predicting gene function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Vinayagam, A., König, R., Moormann, J., Schubert, F., Eils, R., Glatting, K., Suhai, S.: Applying Support Vector Machines for Gene Ontology Based Gene Function Prediction. BMC Bioinformatics 5(116) (2004)

    Google Scholar 

  2. Baldi, P., Brunak, S.: Bioinformatics a Machine Learning Approach, 2nd edn. MIT Press, Cambridge (2001)

    Google Scholar 

  3. Beer, M.A., Tavazoie, S.: Predicting Gene Expression from Sequence. Cell 16 117(2), 185–198 (2004)

    Article  Google Scholar 

  4. Michie, D., Spiegelhalter, D.J., Taylor, C.C.: Machine Learning, Neural and Statistical Classification. Elis Horwood, London (1994)

    MATH  Google Scholar 

  5. Morrison, K.E., Daniels, R.J., Campbell, L., McPherson, J., Davies, K.E.: Human Molecular Genetics 2 (1993)

    Google Scholar 

  6. Haykin, S.: Neural Networks: A Comprehensive Introduction. Prentice Hall, New Jersey (1999)

    Google Scholar 

  7. Le Cun, Y., Touresky, D., Hinton, G., Sejnowski, T.: A Theoretical Framework for Backpropagation. The Connectionist Models Summer School, pp. 21–28 (1988)

    Google Scholar 

  8. Brown, M.P.S., Grundy, W.N., Lin, D., Cristianini, N., Sugnet, C., Furey, T.S., Ares Jr., M., Haussler, D.: Knowledge-Based Analysis of Microarray Gene Expression Data Using Support Vector Machines. Proceedings of the National Academy of Sciences 97(1), 262–267 (1997)

    Article  Google Scholar 

  9. Mitchell, T.M.: Machine Learning. McGraw-Hill Inc., USA (1997)

    MATH  Google Scholar 

  10. NCBI COGs database, http://ncbi.nlm.nih.gov/COG/

  11. King, O.D., Foulger, R.E., Dwight, S.S., White, J.V., Roth, F.P.: Predicting Gene Function from Patterns of Annotation. Genome Research 13(5), 896–904 (2003)

    Article  Google Scholar 

  12. Shenouda, E.: A Quantitative Comparison of Different MLP Activation Functions in Classification. In: Wang, J., Yi, Z., Żurada, J.M., Lu, B.-L., Yin, H. (eds.) ISNN 2006. LNCS, vol. 3971, pp. 849–857. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  13. The Functional Landscape of Mouse Gene Expression, http://hugheslab.med.utoronto.ca/Zhang

  14. Wang, D., Huang, G.: Protein Sequence Classification Using Extreme Learning Machine. In: IJCNN 2005, Montréal, vol. 3, pp. 1406–1411 (2005)

    Google Scholar 

  15. Werbos, P.J.: Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences. Doctoral Thesis, Applied Mathematics. Harvard University, Boston (1974)

    Google Scholar 

  16. Zhang, W., Morris, Q.D., Chang, R., Shai, O., Bakowski, M.A., Mitsakakis, N., Mohammad, N., Robinson, M.D., Zirngibl, R., Somogyi, E., Laurin, N., Eftekharpour, E., Sat, E., Grigull, J., Pan, Q., Peng, W.T., Krogan, N., Greenblatt, J., Fehlings, M., Kooy, D.V., Aubin, J., Bruneau, B.G., Rossant, J., Blencowe, B.J., Frey, B.J., Hughes, T.R.: The Functional Landscape of Mouse Gene Expression. Journal of Biology 3, Article 21 (2004)

    Google Scholar 

  17. Zurada, J.M.: Introduction to Artificial Neural Systems. PWS Publishing, Boston (1999)

    Google Scholar 

  18. Mateos, A., Dopazo, J., Jansen, R., Tu, Y., Gerstein, M., Stolovitzky, G.: Systematic Learning of Gene Functional Classes From DNA Array Expression Data by Using Multilayer Perceptrons. Genome Research 12, 1703–1715 (2002)

    Article  Google Scholar 

  19. Kohonen, T.: Self-Organizing and Associative Memory, 3rd edn. Springer, New York (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Shenouda, E.A., Morris, Q., Bonner, A.J. (2006). Connectionist Approaches for Predicting Mouse Gene Function from Gene Expression. In: King, I., Wang, J., Chan, LW., Wang, D. (eds) Neural Information Processing. ICONIP 2006. Lecture Notes in Computer Science, vol 4232. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11893028_32

Download citation

  • DOI: https://doi.org/10.1007/11893028_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-46479-2

  • Online ISBN: 978-3-540-46480-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics