Skip to main content

On Herbrand’s Theorem for Intuitionistic Logic

  • Conference paper
Logics in Artificial Intelligence (JELIA 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4160))

Included in the following conference series:

Abstract

In this paper we reduce the question of validity of a first-order intuitionistic formula without equality to generating ground instances of this formula and then checking whether the instances are deducible in a propositional intuitionistic tableaux calculus, provided that the propositional proof is compatible with the way how the instances were generated. This result can be seen as a form of the Herbrand theorem, and so it provides grounds for further theoretical investigation of computer-oriented intuitionistic calculi.

Supported by the Nuffield foundation grant NAL/00841/G.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baaz, M., Iemhoff, R.: On the skolemization of existential quantifiers in intuitionistic logic. Annals of Pure and Applied Logic (to appear, 2006)

    Google Scholar 

  2. Bibel, W.: Automated Theorem Proving, 2nd edn., Vieweg, Braunschweig (1987)

    Google Scholar 

  3. Bowen, K.A.: An Herbrand theorem for prenex formulas of LJ. Notre Dame Journal of Formal Logic 17(2), 263–266 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  4. Dyckhoff, R.: Contraction-free sequent calculi for intuitionistic logic. J. Symb. Log. 57(3), 795–807 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  5. Fitting, M.: A modal herbrand theorem. Fundam. Inform. 28(1-2), 101–122 (1996)

    MATH  MathSciNet  Google Scholar 

  6. Gabbay, D.: Labelled deductive systems. Oxford University Press, Oxford (1996)

    MATH  Google Scholar 

  7. Gentzen, G.: Untersuchungen über das logische Schließen. Mathematische Zeitschrift 39(176-210), 405–433 (1934)

    MathSciNet  Google Scholar 

  8. Hähnle, R.: Tableaux and related methods. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, ch. 3, vol. I, pp. 101–178. Elsevier, Amsterdam (2001)

    Chapter  Google Scholar 

  9. Herbrand, J.: Recherches sur la théorie de la démonstration (thesis). In: Goldfarb, W. (ed.) Logical writings, Cambridge (1977)

    Google Scholar 

  10. Konev, B., Lyaletski, A.: Tableau method with free variables for intuitionistic logic. In: Proceedings of the International IIS: IIPWM 2006 Conference. Advances in Soft Computing (to appear, 2006)

    Google Scholar 

  11. Kreitz, C., Otten, J.: Connection-based theorem proving in classical and non-classical logics. J. UCS 5(3), 88–112 (1999)

    MATH  MathSciNet  Google Scholar 

  12. Lyaletski, A.: Sequent forms of Herbrand theorem and their applications. Annals of Mathematics and Artificial Intelligence (in press)

    Google Scholar 

  13. Lyaletski, A.V.: Gentzen calculi and admissible substitutions. In: Actes Préliminaieres du Symposium Franco-Sovietique “Informatika-91”, Grenoble, France, pp. 99–111 (1991)

    Google Scholar 

  14. Maslov, S.Y.: An inverse method for establishing deducibility of nonprenex formulas of the predicate calculus. In: Siekmann, J., Wrightson, G. (eds.) Automation of Reasoning 2: Classical Papers on Computational Logic 1967-1970, pp. 48–54. Springer, Heidelberg (1983)

    Google Scholar 

  15. Mints, G.: Herbrand theorem. In: Mathematical Theory of Logical Inference, Nauka, Moscow, pp. 311–350 (1967)

    Google Scholar 

  16. Mints, G.: The Skolem method in intuitionistic calculi. In: Proc. Steklov Inst. Math., vol. 121, pp. 73–109 (1972)

    Google Scholar 

  17. Otten, J.: ileanTAP: An intuitionistic theorem prover. In: Galmiche, D. (ed.) TABLEAUX 1997. LNCS, vol. 1227, pp. 307–312. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  18. Otten, J., Kreitz, C.: A connection based proof method for intuitionistic logic. In: Baumgartner, P., Posegga, J., Hähnle, R. (eds.) TABLEAUX 1995. LNCS, vol. 918, pp. 122–137. Springer, Heidelberg (1995)

    Google Scholar 

  19. Otten, J., Kreitz, C.: A uniform proof procedure for classical and non-classical logics. In: Görz, G., Hölldobler, S. (eds.) KI 1996. LNCS, vol. 1137, pp. 307–319. Springer, Heidelberg (1996)

    Google Scholar 

  20. Reeves, S.: Semantic tableaux as framework for automated theorem-proving. In: Mellish, C.S., Hallam, J. (eds.) Proc. AISB 1987, pp. 125–139 (1987)

    Google Scholar 

  21. Robinson, J.A.: A machine oriented logic based on the resolution principle. J. Assoc. Comput. Mach 12, 23–41 (1965)

    MATH  MathSciNet  Google Scholar 

  22. Shankar, N.: Proof search in the intuitionistic sequent calculus. In: Kapur, D. (ed.) CADE 1992. LNCS, vol. 607, pp. 522–536. Springer, Heidelberg (1992)

    Google Scholar 

  23. Voronkov, A.: Proof search in intuitionistic logic based on constraint satisfaction. In: Miglioli, P., Moscato, U., Ornaghi, M., Mundici, D. (eds.) TABLEAUX 1996. LNCS, vol. 1071, pp. 312–329. Springer, Heidelberg (1996)

    Google Scholar 

  24. Waaler, A., Wallen, L.: Tableaux for intuitionistic logics. In: D’Agostino, M., Gabbay, D., Hähnle, R., Posegga, J. (eds.) Handbook of Tableau Methods, pp. 255–296. Kluwer, Dordrecht (1999)

    Google Scholar 

  25. Wallen, L.: Automated Deduction in Nonclassical Logics. MIT Press, Cambridge (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lyaletski, A., Konev, B. (2006). On Herbrand’s Theorem for Intuitionistic Logic. In: Fisher, M., van der Hoek, W., Konev, B., Lisitsa, A. (eds) Logics in Artificial Intelligence. JELIA 2006. Lecture Notes in Computer Science(), vol 4160. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11853886_25

Download citation

  • DOI: https://doi.org/10.1007/11853886_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-39625-3

  • Online ISBN: 978-3-540-39627-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics