Skip to main content

Neuroevolution with Analog Genetic Encoding

  • Conference paper
Parallel Problem Solving from Nature - PPSN IX (PPSN 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4193))

Included in the following conference series:

Abstract

The evolution of artificial neural networks (ANNs) is often used to tackle difficult control problems. There are different approaches to the encoding of neural networks in artificial genomes. Analog Genetic Encoding (AGE) is a new implicit method derived from the observation of biological genetic regulatory networks. This paper shows how AGE can be used to simultaneously evolve the topology and the weights of ANNs for complex control systems. AGE is applied to a standard benchmark problem and we show that its performance is equivalent or superior to some of the most powerful algorithms for neuroevolution in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Maniezzo, V.: Genetic evolution of the topology and weight distribution of neural networks. IEEE Transactions on Neural Networks 5(1), 39–53 (1994)

    Article  Google Scholar 

  2. Pujol, J., Poli, R.: Evolving the topology and the weights of neural networks using a dual representation. Applied Intelligence 8(1), 73–84 (1998)

    Article  Google Scholar 

  3. Kobayashi, K., Ohbayashi, M.: A new indirect encoding method with variable length gene code to optimize neural network structures. In: Proceedings of the International Joint Conference on Neural Networks, vol. 6, pp. 4409–4412 (1999)

    Google Scholar 

  4. Stanley, K., Miikkulainen, R.: Evolving neural networks through augmenting topologies. Evolutionary Computation 10(2), 99–127 (2002)

    Article  Google Scholar 

  5. Cangelosi, A., Parisi, D., Nolfi, S.: Cell division and migration in a genotype for neural networks. Network: Computation in Neural Systems 5(4), 497–515 (1994)

    Article  Google Scholar 

  6. Gruau, F.: Automatic definition of modular neural networks. Adaptive Behaviour 3(2), 151–183 (1995)

    Article  Google Scholar 

  7. Nolfi, S., Parisi, D.: Genotypes for neural networks. In: Arbib, M. (ed.) The Handbook of Brain Theory and Neural Networks, pp. 431–434. MIT Press, Cambridge (1995)

    Google Scholar 

  8. Eggenberger, P.: Creation of neural networks based on developmental and evolutionary principles. In: Proceedings of the International Conference on Artificial Neural Networks, Lausanne, Switzerland (1997)

    Google Scholar 

  9. Astor, J., Adami, C.: A developmental model for the evolution of artificial neural networks. Artificial Life 6(3), 189–218 (2000)

    Article  Google Scholar 

  10. Mattiussi, C.: Evolutionary synthesis of analog networks. Ph.D. dissertation n.3199, EPFL, Lausanne (2005)

    Google Scholar 

  11. Bongard, J.: Evolving modular genetic regulatory networks. In: Proceedings of the IEEE 2002 Congress on Evolutionary Computation, CEC 2002, pp. 1872–1877. IEEE Press, Piscataway (2002)

    Google Scholar 

  12. Mattiussi, C., Floreano, D.: Evolution of analog networks using local string alignment on highly reorganizable genomes. In: Proceedings of the 2004 NASA/DoD Conference on Evolvable Hardware, pp. 30–37 (2004)

    Google Scholar 

  13. Gruau, F., Whitley, D., Pyeatt, L.: A comparison between cellular encoding and direct encoding for genetic neural networks. In: Genetic Programming 1996: Proceedings of the First Annual Conference, pp. 81–89 (1996)

    Google Scholar 

  14. Gomez, F.J., Miikkulainen, R.: Solving non-markovian control tasks with neuroevolution. In: Proceedings of the International Joint Conference on Artificial Intelligence, pp. 1356–1361 (1999)

    Google Scholar 

  15. Stanley, K.O., Miikkulainen, R.: Evolving neural networks through augmenting topologies. Evolutionary Computation 10(2), 99–127 (2002)

    Article  Google Scholar 

  16. Gusfield, G.: Algorithms on strings, trees, and sequences. Cambridge University Press, Cambridge (1997)

    Book  Google Scholar 

  17. Igel, C.: Neuroevolution for reinforcement learning using evolution strategies. In: Congress on Evolutionary Computation 2003 (CEC 2003), pp. 2588–2595 (2003)

    Google Scholar 

  18. Wieland, A.P.: Evolving neural network controllers for unstable systems. In: Proceedings of the International Joint Conference on Neural Networks, pp. 667–673 (1991)

    Google Scholar 

  19. Beer, R.D.: On the dynamics of small continuous-time recurrent neural networks. Adaptive Behavior 3(4), 469–509 (1995)

    Article  Google Scholar 

  20. Stanley, K.O.: Efficient evolution of neural networks through complexification. Ph.D. dissertation, University of Texas at Austin (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dürr, P., Mattiussi, C., Floreano, D. (2006). Neuroevolution with Analog Genetic Encoding. In: Runarsson, T.P., Beyer, HG., Burke, E., Merelo-Guervós, J.J., Whitley, L.D., Yao, X. (eds) Parallel Problem Solving from Nature - PPSN IX. PPSN 2006. Lecture Notes in Computer Science, vol 4193. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11844297_68

Download citation

  • DOI: https://doi.org/10.1007/11844297_68

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-38990-3

  • Online ISBN: 978-3-540-38991-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics