Skip to main content

A Model of Reaching that Integrates Reinforcement Learning and Population Encoding of Postures

  • Conference paper
From Animals to Animats 9 (SAB 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4095))

Included in the following conference series:

Abstract

When monkeys tackle novel complex behavioral tasks by trial-and-error they select actions from repertoires of sensorimotor primitives that allow them to search solutions in a space which is coarser than the space of fine movements. Neuroscientific findings suggested that upper-limb sensorimotor primitives might be encoded, in terms of the final goal-postures they pursue, in premotor cortex. A previous work by the authors reproduced these results in a model based on the idea that cortical pathways learn sensorimotor primitives while basal ganglia learn to assemble and trigger them to pursue complex reward-based goals. This paper extends that model in several directions: a) it uses a Kohonen network to create a neural map with population encoding of postural primitives; b) it proposes an actor-critic reinforcement learning algorithm capable of learning to select those primitives in a biologically plausible fashion (i.e., through a dynamic competition between postures); c) it proposes a procedure to pre-train the actor to select promising primitives when tackling novel reinforcement learning tasks. Some tests (obtained with a task used for studying monkeys engaged in learning reaching-action sequences) show that the model is computationally sound and capable of learning to select sensorimotor primitives from the postures’ continuous space on the basis of their population encoding.

This research has been supported by the project “MindRACES – From Reactive to Anticipatory Cognitive Embodied Systems”, European Commission’s grant FP6-511931.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aflalo, T.N., Graziano, M.S.A.: Partial Tuning of Motor Cortex Neurons to Final Posture in a Free-Moving Paradigm. Proceedings of the National Academy of Science 103(8), 2909–2914 (2006)

    Article  Google Scholar 

  2. Arbib, M.: Visuomotor Coordination: From Neural Nets to Schema Theory. Cognition and Brain Theory 4, 23–39 (1981)

    Google Scholar 

  3. Baldassarre, G.: A Modular Neural-Network Model of the Basal Ganglia’s Role in Learning and Selecting Motor Behaviours. Journal of Cognitive Systems Research 3, 5–13 (2002)

    Article  Google Scholar 

  4. Barto, A.G., Mahadevan, S.: Recent Advances in Hierarchical Reinforcement Learning. Discrete Event Dynamic Systems 13, 341–379 (2003)

    Article  MathSciNet  Google Scholar 

  5. Girard, B., Filliat, D., Meyer, J.-A., Berthoz, A., Guillot, A.: Integration of Navigation and Action Selection Functionalities in a Computational Model of Cortico-Basal Ganglia-Thalamo-Cortical Loops. Adaptive Behavior 13(2), 115–130 (2005)

    Article  Google Scholar 

  6. Giszter, S.F., Mussa-Ivaldi, F.A., Bizzi, E.: Convergent Force Fields Organised in the Frog’s Spinal Cord. Journal of Neuroscience 13(2), 467–491 (1993)

    Google Scholar 

  7. Graybiel, A.M.: The Basal Ganglia and Chunking of Action Repertoires. Neurobiology of Learning and Memory 70, 119–136 (1998)

    Article  Google Scholar 

  8. Graziano, M.S., Taylor, C.S., Moore, T.: Complex Movements Evoked by Microstimulation of Precentral Cortex. Neuron 34, 841–851 (2002)

    Article  Google Scholar 

  9. Gurney, K., Prescott, T.J., Redgrave, P.: A Computational Model of Action Selection in the Basal Ganglia I. A New Functional Anatomy. Biological Cybernetics 84, 401–410 (2001)

    Article  MATH  Google Scholar 

  10. Houk, J.C., Davis, J.L., Beiser, D.G. (eds.): Models of Information Processing in the Basal Ganglia. MIT Press, Cambridge (1995)

    Google Scholar 

  11. Joel, D.E.E., Niv, Y., Ruppin, E.: Actor-critic Models of the Basal Ganglia: New Anatomical and Computational Perspectives. Neural Networks 15, 535–547 (2002)

    Article  Google Scholar 

  12. Kandel, E.R., Schwartz, J.H., Jessell, T.M.: Principles of Neural Science. McGraw-Hill, New York (2000)

    Google Scholar 

  13. Kohonen, T.: Self-Organizing Maps, 3rd edn. Springer, Heidelberg (2001)

    MATH  Google Scholar 

  14. Kuperstein, M.: A Neural Model of Adaptive Hand-Eye Coordination for Single Postures. Science 239, 1308–1311 (1988)

    Article  Google Scholar 

  15. Meltzoff, A.N., Moore, M.K.: Explaining Facial Imitation: A Theoretical Model. Early Development and Parenting 6, 179–192 (1997)

    Article  Google Scholar 

  16. Ognibene, D., Mannella, F., Pezzulo, G., Baldassarre, G.: Integrating Reinforcement-Learning, Accumulator Models, and Motor-Primitives to Study Action Selection and Reaching in Monkeys. In: Fum, D., Del Missier, F., Stocco, A. (eds.) Proceedings of the 7th International Conference on Cognitive Modelling - ICCM 2006, pp. 214–219 (2006)

    Google Scholar 

  17. Pasupathy, A., Miller, E.K.: Different Time Courses of Learning-Related Activity In the Prefrontal Cortex and Striatum. Nature 433, 873–876 (2005)

    Article  Google Scholar 

  18. Pouget, A., Lathaam, P.E.: Population Codes. In: Arbib, M.A. (ed.) The Handbook of Brain Theory and Neural Networks, pp. 893–897. MIT Press, Cambridge (2003)

    Google Scholar 

  19. Rand, M.K., Hikosaka, O., Miyachi, S., Lu, X., Miyashita, K.: Characteristics of a Long-Term Procedural Skill in the Monkey. Experimental Brain Research 118, 293–297 (1998)

    Article  Google Scholar 

  20. Widrow, B., Hoff, M.E.: Adaptive Switching Circuits. IRE WESCON Convention Record 4, 96–104 (1960)

    Google Scholar 

  21. Schall, J.D.: Neural Basis of Deciding, Choosing and Acting. Nature Reviews Neuroscience 2, 33–42 (2001)

    Article  Google Scholar 

  22. Shadmehr, R., Wise, S.: The Computational Neurobiology of Reaching and Pointing. MIT Press, Cambridge (2005)

    Google Scholar 

  23. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press, Cambridge (1998)

    Google Scholar 

  24. Usher, M., McClelland, J.L.: On the Time Course of Perceptual Choice: The Leaky Competing Accumulator Model. Psychological Review 108, 550–592 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ognibene, D., Rega, A., Baldassarre, G. (2006). A Model of Reaching that Integrates Reinforcement Learning and Population Encoding of Postures. In: Nolfi, S., et al. From Animals to Animats 9. SAB 2006. Lecture Notes in Computer Science(), vol 4095. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11840541_32

Download citation

  • DOI: https://doi.org/10.1007/11840541_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-38608-7

  • Online ISBN: 978-3-540-38615-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics