Skip to main content

Immune System Modeling: The OO Way

  • Conference paper
Artificial Immune Systems (ICARIS 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4163))

Included in the following conference series:

Abstract

This paper motivates the use of Object Oriented technologies such as OO programming languages, UML and Design Patterns in order to facilitate the development and the communication of immune system software modeling. The introduction justifies the need for immune computer models at different levels of abstraction and for various reasons: pedagogy, testing and study of emergent phenomena and quantitative predictions. Then the benefits allowed by adopting the OO way are further illustrated by simple examples of UML class, state and sequence diagrams and instances of Design Patterns such as the “Bridge” or the “State”, helping to question and to clarify the immune objects and relationships. Finally an elementary clonal selection model, restricted to B cells, antibodies and antigens, and fully developed in the OO spirit is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Antia, R., Lipsitch, M.: Mathematical models of parasite responses to host immune defenses. Parasitology 115, 155–167 (1998)

    Article  Google Scholar 

  2. Bersini: Design Patterns for an OO Chemistry. In: Proceedings of the 1999 European Conference on Artificial Life. MIT Press, Cambridge (1999)

    Google Scholar 

  3. Bersini, H.: Self-Assertion vs Self-Recognition: A Tribute to Francisco Varela. In: Proc. of the first ICARIS Conference, pp. 107–112 (2002)

    Google Scholar 

  4. Roger, B., Bruck, J.: Can Computers Help to Explain Biology? Nature 440(7083), 416 (2006)

    Article  Google Scholar 

  5. Celada, F., Seiden, P.E.: A computer model of cellular interactions in the immune system. Immunol. Today 13, 56–62 (1992)

    Article  Google Scholar 

  6. Chao, D.L., Davenport, M.P., Forrest, S., Perelson, A.S.: Stochastic stage-structured modelling of the adaptive immune system. In: Proceedings of the IEEE Computer Society Bioinformatics Conference (CSB 2003), pp. 124–131 (2003)

    Google Scholar 

  7. Chao, D.L., Davenport, M.P., Forrest, S., Perelson, A.S.: A stochastic model of cytotoxic T cell responses. Journal of Theor. Biol. 228, 227–240 (2004)

    Article  MathSciNet  Google Scholar 

  8. Cohen, I. R., Tending Adam’s Garden: Evolving the Cognitive Immune Self. Academic Press, San Diego (2000)

    Google Scholar 

  9. Cohen, I.R.: T-cell vaccination for autoimmune disease: A panorama. Vaccine 20, 706–710 (2002)

    Article  Google Scholar 

  10. Cohn, M., Langman, R.E., Mata, J.J.: A computerized model for the self-non-self discrimination at the level of the Th (Th genesis). I. The origin of primer effector Th. cells. Int. Immunol. 14, 1105 (2002)

    Google Scholar 

  11. De Boer, R.: http://theory.bio.uu.nl/rdb/immune

  12. De Boer, R.J., Perelson, A.S.: Size and Connectivity as Emergent Properties of a Developing Immune Network. Journal of Theor. Biology 149, 381–424 (1991)

    Article  Google Scholar 

  13. Efroni, S., Harel, D., Cohen, I.R.: Reactive animation: Realistic Modeling of Complex Dynamic Systems. Computer 38(1), 38–47 (2005)

    Article  Google Scholar 

  14. Efroni, S., Harel, D., Cohen, I.R.: A theory for complex systems: reactive animation. In: Patton, R., Namara, L.M. (eds.) Studies in Multidisciplinarity, vol. 3, pp. 309–324. Elsevier, Amsterdam (2006)

    Google Scholar 

  15. Farmer, J.D., Packard, N.H., Perelson, A.S.: The immune system, adaptation and machine learning. Physica D 22, 187–204 (1986)

    Article  MathSciNet  Google Scholar 

  16. Folwer, M.: UML Distilled, 3rd edn. Addison Wesley, Reading (2004)

    Google Scholar 

  17. Freeman, E., Freeman, E., Sierra, K., Bates, B.: Head First Design Patterns. O’Reilly Media, Sebastopol (2004)

    Google Scholar 

  18. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns. Addison-Wesley, Reading (1995)

    Google Scholar 

  19. Holland, J.: What is to come and how to predict it. In: Brockman, J. (ed.) The Next Fifty Years: Science in the First Half of the Twenty-first Century – Vintage (2002)

    Google Scholar 

  20. Janeway, C., Travers, P., Walport, M.: M. Shlomchik: Immunobiology, 6th edn. Garland Science Publishing (2005)

    Google Scholar 

  21. Kleinstein, S.H., Seiden, P.E.: Computer simulations: simmulating the immune system. Comput. Sci. Eng. 2, 69–77 (2000)

    Article  Google Scholar 

  22. Kortes Altes, H., Ribeiro, R.M., De Boer, R.J.: The race between initial T-helper expansion and virus growth upon HIV infection influences polyclonality of the response and viral set-point. Proc. R. Soc. Lond. B 270, 1349–1358 (2003)

    Article  Google Scholar 

  23. Langman, R.E., Cohn, M.: A minimal model for the self-non-self distinction: a return to the basics. Semin. Immuno. 13, 189 (2000)

    Article  Google Scholar 

  24. Larman, C.: Applying UML and Patterns, 2nd edn. Prentice-Hall, Inc., Englewood Cliffs (2003)

    Google Scholar 

  25. Nowak, M.A., May, R.M.: Virus dynamics: mathematical foundations of virology and immunology. Oxford University Press, Oxford (2000)

    Google Scholar 

  26. Perelson, A.S., Neumann, A.U., Markowitz, M., Leonard, J.M., Ho, D.: HIV-1 Dynamics in Vivo: Virion Clearance, Infected Cell Life-Span and Viral Generation Time. Science 271, 1582–1586 (1996)

    Article  Google Scholar 

  27. Perelson, A.S., Weisbuch, G.: Immunology for physicists - Rev. Mod. Phys. 69, 1219–1267 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bersini, H. (2006). Immune System Modeling: The OO Way. In: Bersini, H., Carneiro, J. (eds) Artificial Immune Systems. ICARIS 2006. Lecture Notes in Computer Science, vol 4163. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11823940_12

Download citation

  • DOI: https://doi.org/10.1007/11823940_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-37749-8

  • Online ISBN: 978-3-540-37751-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics