Skip to main content

Towards Self-verification of HOL Light

  • Conference paper
Automated Reasoning (IJCAR 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4130))

Included in the following conference series:

Abstract

The HOL Light prover is based on a logical kernel consisting of about 400 lines of mostly functional OCaml, whose complete formal verification seems to be quite feasible. We would like to formally verify (i) that the abstract HOL logic is indeed correct, and (ii) that the OCaml code does correctly implement this logic. We have performed a full verification of an imperfect but quite detailed model of the basic HOL Light core, without definitional mechanisms, and this verification is entirely conducted with respect to a set-theoretic semantics within HOL Light itself. We will duly explain why the obvious logical and pragmatic difficulties do not vitiate this approach, even though it looks impossible or useless at first sight. Extension to include definitional mechanisms seems straightforward enough, and the results so far allay most of our practical worries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andrews, P.B.: An Introduction to Mathematical Logic and Type Theory: To Truth Through Proof. Academic Press, London (1986)

    MATH  Google Scholar 

  2. Barendregt, H.: The impact of the lambda calculus on logic and computer science. Bulletin of Symbolic Logic 3, 181–215 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  3. Church, A.: A formulation of the Simple Theory of Types. Journal of Symbolic Logic 5, 56–68 (1940)

    Article  MATH  MathSciNet  Google Scholar 

  4. Davis, P.J.: Fidelity in mathematical discourse: Is one and one really two? The American Mathematical Monthly 79, 252–263 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  5. Diaconescu, R.: Axiom of choice and complementation. Proceedings of the American Mathematical Society 51, 176–178 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  6. Dijkstra, E.W.: Formal techniques and sizeable programs (EWD563). In: Dijkstra, E.W. (ed.) Selected Writings on Computing: A Personal Perspective, pp. 205–214. Springer, Heidelberg (1976); (Paper prepared for Symposium on the Mathematical Foundations of Computing Science, Gdansk 1976)

    Google Scholar 

  7. Forster, T.: Reasoning about theoretical entities. Advances in Logic, vol. 3. World Scientific, Singapore (2003)

    Book  MATH  Google Scholar 

  8. Gordon, M.J.C.: Representing a logic in the LCF metalanguage. In: Néel, D. (ed.) Tools and notions for program construction: an advanced course, pp. 163–185. Cambridge University Press, Cambridge (1982)

    Google Scholar 

  9. Gordon, M.J.C., Melham, T.F.: Introduction to HOL: a theorem proving environment for higher order logic. Cambridge University Press, Cambridge (1993)

    MATH  Google Scholar 

  10. Gordon, M.J.C., Milner, R., Wadsworth, C.P.: Edinburgh LCF. LNCS, vol. 78. Springer, Heidelberg (1979)

    Google Scholar 

  11. Harrison, J.: HOL Light: A tutorial introduction. In: Srivas, M., Camilleri, A. (eds.) FMCAD 1996. LNCS, vol. 1166, pp. 265–269. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  12. Lambek, J., Scott, P.J.: Introduction to higher order categorical logic. Cambridge studies in advanced mathematics, vol. 7. Cambridge University Press, Cambridge (1986)

    MATH  Google Scholar 

  13. Lecat, M.: Erreurs de Mathématiciens. Brussels (1935)

    Google Scholar 

  14. McCune, W., Shumsky, O.: Ivy: A preprocessor and proof checker for first-order logic. In: Kaufmann, M., Manolios, P., Moore, J.S. (eds.) Computer-Aided Reasoning: ACL2 Case Studies, pp. 265–281. Kluwer, Dordrecht (2000)

    Google Scholar 

  15. Melham, T.F.: The HOL logic extended with quantification over type variables. In: Claesen, L.J.M., Gordon, M.J.C. (eds.) Proceedings of the IFIP TC10/WG10.2 International Workshop on Higher Order Logic Theorem Proving and its Applications, IMEC, Leuven, Belgium. IFIP Transactions A: Computer Science and Technology, vol. A-20, pp. 3–18. North-Holland, Amsterdam (1992)

    Google Scholar 

  16. Pollack, R.: How to believe a machine-checked proof. In: Sambin, G., Smith, J. (eds.) Twenty-Five Years of Constructive Type Theory, Oxford University Press, Oxford (1998), also available on the Web as http://www.brics.dk/~pollack/export/believing.ps.gz

    Google Scholar 

  17. Ridge, T.: A mechanically verified, efficient, sound and complete theorem prover for first order logic (2005), available via http://homepages.inf.ed.ac.uk/s0128214/

  18. Rudnicki, P.: An overview of the MIZAR project (1992), available on the Web as http://web.cs.ualberta.ca/~piotr/Mizar/MizarOverview.ps

  19. Scott, D.: A type-theoretical alternative to ISWIM, CUCH, OWHY. Theoretical Computer Science 121, 411–440 (1993): Annotated version of a 1969 manuscript

    Article  MATH  MathSciNet  Google Scholar 

  20. Slind, K.: Reasoning about terminating functional programs. PhD thesis, Institut für Informatik, Technische Universität München (1999), available from http://tumb1.biblio.tu-muenchen.de/publ/diss/in/1999/slind.html

  21. Smullyan, R.M.: Gödel’s Incompleteness Theorems. Oxford Logic Guides, vol. 19. Oxford University Press, Oxford (1992)

    MATH  Google Scholar 

  22. Wong, W.: Recording HOL proofs. Technical Report 306, University of Cambridge Computer Laboratory, New Museums Site, Pembroke Street, Cambridge, CB2 3QG, UK (1993)

    Google Scholar 

  23. von Wright, J.: Representing higher-order logic proofs in HOL. In: Melham, T.F., Camilleri, J. (eds.) HUG 1994. LNCS, vol. 859, pp. 456–470. Springer, Heidelberg (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Harrison, J. (2006). Towards Self-verification of HOL Light. In: Furbach, U., Shankar, N. (eds) Automated Reasoning. IJCAR 2006. Lecture Notes in Computer Science(), vol 4130. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11814771_17

Download citation

  • DOI: https://doi.org/10.1007/11814771_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-37187-8

  • Online ISBN: 978-3-540-37188-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics