Skip to main content

Proof Transformation by CERES

  • Conference paper
Mathematical Knowledge Management (MKM 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4108))

Included in the following conference series:

Abstract

Cut-elimination is the most prominent form of proof transformation in logic. The elimination of cuts in formal proofs corresponds to the removal of intermediate statements (lemmas) in mathematical proofs. The cut-elimination method CERES (cut-elimination by resolution) works by constructing a set of clauses from a proof with cuts. Any resolution refutation of this set then serves as a skeleton of an LK-proof with only atomic cuts.

In this paper we present an extension of CERES to a calculus LKDe which is stronger than the Gentzen calculus LK (it contains rules for introduction of definitions and equality rules). This extension makes it much easier to formalize mathematical proofs and increases the performance of the cut-elimination method. The system CERES already proved efficient in handling very large proofs.

Supported by the Austrian Science Fund (project no. P17995-N12).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aigner, M., Ziegler, G.M.: Proofs from THE BOOK. Springer, Heidelberg (1998)

    MATH  Google Scholar 

  2. Andrews, P.B.: Resolution in Type Theory. Journal of Symbolic Logic 36, 414–432 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  3. Leitsch, A., Baaz, M., Hetzl, S., Richter, C., Spohr, H.: Cut-Elimination: Experiments with CERES. In: Baader, F., Voronkov, A. (eds.) LPAR 2004. LNCS (LNAI), vol. 3452, pp. 481–495. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  4. Baaz, M., Leitsch, A.: On skolemization and proof complexity. Fundamenta Informaticae 20(4), 353–379 (1994)

    MATH  MathSciNet  Google Scholar 

  5. Baaz, M., Leitsch, A.: Cut normal forms and proof complexity. Annals of Pure and Applied Logic 97, 127–177 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  6. Baaz, M., Leitsch, A.: Cut-Elimination and Redundancy-Elimination by Resolution. Journal of Symbolic Computation 29, 149–176 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  7. Baaz, M., Leitsch, A.: Towards a Clausal Analysis of Cut-Elimination. Journal of Symbolic Computation 41, 381–410 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  8. Eder, E.: Relative complexities of first-order calculi. Vieweg (1992)

    Google Scholar 

  9. Gentzen, G.: Untersuchungen über das logische Schließen. Mathematische Zeitschrift 39, 405–431 (1935)

    Article  MathSciNet  Google Scholar 

  10. Girard, J.Y.: Proof Theory and Logical Complexity. In: Studies in Proof Theory, Bibliopolis, Napoli (1987)

    Google Scholar 

  11. Luckhardt, H.: Herbrand-Analysen zweier Beweise des Satzes von Roth: polynomiale Anzahlschranken. The Journal of Symbolic Logic 54, 234–263 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  12. Nieuwenhuis, R., Rubio, A.: Paramodulation-based Theorem Proving. In: Robinson, J.A., Voronkov, A. (eds.) Handbook of Automated Reasoning, pp. 371–443. Elsevier, Amsterdam (2001)

    Chapter  Google Scholar 

  13. Polya, G.: Mathematics and plausible reasoning: Induction and Analogy in Mathematics, vol. I. Princeton University Press, Princeton (1954)

    MATH  Google Scholar 

  14. Polya, G.: Mathematics and plausible reasoning: Patterns of Plausible Inference, vol. II. Princeton University Press, Princeton (1954)

    MATH  Google Scholar 

  15. Takeuti, G.: Proof Theory, 2nd edn. North-Holland, Amsterdam (1987)

    MATH  Google Scholar 

  16. Urban, C.: Classical Logic and Computation Ph.D. Thesis, University of Cambridge Computer Laboratory (2000)

    Google Scholar 

  17. Degtyarev, A., Voronkov, A.: Equality Reasoning in Sequent-Based Calculi. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, vol. I ch. 10, pp. 611–706. Elsevier Science, Amsterdam (2001)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Baaz, M., Hetzl, S., Leitsch, A., Richter, C., Spohr, H. (2006). Proof Transformation by CERES. In: Borwein, J.M., Farmer, W.M. (eds) Mathematical Knowledge Management. MKM 2006. Lecture Notes in Computer Science(), vol 4108. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11812289_8

Download citation

  • DOI: https://doi.org/10.1007/11812289_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-37104-5

  • Online ISBN: 978-3-540-37106-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics