Skip to main content

A Bialgebraic Review of Deterministic Automata, Regular Expressions and Languages

  • Chapter
Algebra, Meaning, and Computation

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4060))

Abstract

This papers reviews the classical theory of deterministic automata and regular languages from a categorical perspective. The basis is formed by Rutten’s description of the Brzozowski automaton structure in a coalgebraic framework. We enlarge the framework to a so-called bialgebraic one, by including algebras together with suitable distributive laws connecting the algebraic and coalgebraic structure of regular expressions and languages. This culminates in a reformulated proof via finality of Kozen’s completeness result. It yields a complete axiomatisation of observational equivalence (bisimilarity) on regular expressions. We suggest that this situation is paradigmatic for (theoretical) computer science as the study of “generated behaviour”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arbib, M.A., Manes, E.G.: Foundations of system theory: Decomposable systems. Automatica 10, 285–302 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  2. Arbib, M.A., Manes, E.G.: Algebraic Approaches to Program Semantics. In: Texts and Monogr. Comp. Sci., Springer, Heidelberg (1986)

    Google Scholar 

  3. de Bakker, J.W., Vink, E.: Control Flow Semantics. MIT Press, Cambridge (1996)

    MATH  Google Scholar 

  4. Barr, M., Wells, C.: Toposes, Triples and Theories. Springer, Berlin (1985), Revised and corrected version available from www.cwru.edu/artsci/math/wells/pub/ttt.html

    MATH  Google Scholar 

  5. Bartels, F.: On generalised coinduction and probabilistic specification formats. Distributive laws in coalgebraic modelling. PhD thesis, Free Univ. Amsterdam (2004)

    Google Scholar 

  6. Beck, J.: Distributive laws. In: Eckman, B. (ed.) Seminar on Triples and Categorical Homolgy Theory. Lect. Notes Math., vol. 80, pp. 119–140. Springer, Berlin (1969)

    Chapter  Google Scholar 

  7. Bloom, B., Istrail, S., Meyer, A.R.: Bisimulation can’t be traced. Journ. ACM 42(1), 232–268 (1988)

    Article  MathSciNet  Google Scholar 

  8. Brzozowski, J.A.: Derivatives of regular expressions. Journ. ACM 11(4), 481–494 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  9. Conway, J.H.: Regular Algebra and Finite Machines. Chapman and Hall, Boca Raton (1971)

    MATH  Google Scholar 

  10. Fokkink, W.: On the completeness of the equations for the Kleene star in bisimulation. In: Nivat, M., Wirsing, M. (eds.) AMAST 1996. LNCS, vol. 1101, pp. 180–194. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  11. Goguen, J.A.: Minimal realization of machines in closed categories. Bull. Amer. Math. Soc. 78(5), 777–783 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  12. Goguen, J.A.: Realization is universal. Math. Syst. Theor. 6(4), 359–374 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  13. Goguen, J.A.: Discrete-time machines in closed monoidal categories. I. Journ. Comp. Syst. Sci. 10, 1–43 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  14. Groote, J.F., Vaandrager, F.: Structured operational semantics and bisimulation as a congruence. Inf. Comp. 100(2), 202–260 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  15. Hermida, C., Jacobs, B.: Structural induction and coinduction in a fibrational setting. Inf. Comp. 145, 107–152 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  16. Jacobs, B.: Objects and classes, co-algebraically. In: Freitag, B., Jones, C.B., Lengauer, C., Schek, H.-J. (eds.) Object-Orientation with Parallelism and Persistence, pp. 83–103. Kluwer Academic Publishers, Dordrecht (1996)

    Google Scholar 

  17. Jacobs, B.: Exercises in coalgebraic specification. In: Blackhouse, R., Crole, R.L., Gibbons, J. (eds.) Algebraic and Coalgebraic Methods in the Mathematics of Program Construction. LNCS, vol. 2297, pp. 237–280. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  18. Jacobs, B.: Distributive laws for the coinductive solution of recursive equations. Inf. & Comp. 204(4), 561–587 (2006), Earlier version in number 106 in Elect. Notes in Theor. Comp. Sci.

    Article  MATH  MathSciNet  Google Scholar 

  19. Johnstone, P.T.: Adjoint lifting theorems for categories of algebras. Bull. London Math. Soc. 7, 294–297 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  20. Kick, M.: Bialgebraic modelling of timed processes. In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 525–536. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  21. Kleene, S.C.: Representation of events in nerve nets and finite automata. In: Shannon, C.E., McCarthy, J. (eds.) Automata Studies. Annals of Mathematics Studies, vol. 34, pp. 3–41. Princeton University Press, Princeton (1956)

    Google Scholar 

  22. Koushik, S., Rosu, G.: Generating optimal monitors for extended regular expressions. In: Runtime Verification (RV 2003). Elect. Notes in Theor. Comp. Sci., vol. 89(2), Elsevier, Amsterdam (2003)

    Google Scholar 

  23. Kozen, D.: A completeness theorem for Kleene algebras and the algebra of regular events. Inf. Comp. 110(2), 366–390 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  24. Kozen, D.: Myhill-nerode relations on automatic systems and the completeness of Kleene algebra. In: Ferreira, A., Reichel, H. (eds.) STACS 2001. LNCS, vol. 2010, pp. 27–38. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  25. Mac Lane, S.: Categories for the Working Mathematician. Springer, Heidelberg (1971)

    MATH  Google Scholar 

  26. Lenisa, M., Power, J., Watanabe, H.: Distributivity for endofunctors, pointed and copointed endofunctors, monads and comonads. In: Reichel, H. (ed.) Coalgebraic Methods in Computer Science. Elect. Notes in Theor. Comp. Sci. vol. 33, Elsevier, Amsterdam (2000)

    Google Scholar 

  27. Muller, D.E., Schupp, P.E.: Alternating automata on infinite trees. Theor. Comp. Sci. 54(2-3), 267–276 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  28. Perrin, D.: Finite automata. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science, vol. B, pp. 1–55. Elsevier/MIT Press (1990)

    Google Scholar 

  29. Reichel, H.: An approach to object semantics based on terminal co-algebras. Math. Struct. Comp. Sci. 5, 129–152 (1995)

    MATH  MathSciNet  Google Scholar 

  30. Rutten, J.: Automata and coinduction (an exercise in coalgebra). In: Sangiorgi, D., de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466, pp. 194–218. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  31. Rutten, J.: Behavioural differential equations: a coinductive calculus of streams, automata, and power series. Theor. Comp. Sci. 308, 1–53 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  32. Rutten, J., Turi, D.: Initial algebra and final coalgebra semantics for concurrency. In: de Bakker, J.W., de Roever, W.-P., Rozenberg, G. (eds.) REX 1993. LNCS, vol. 803, pp. 530–582. Springer, Heidelberg (1994)

    Google Scholar 

  33. Rutten, J.J.M.M.: Automata, power series, and coinduction: Taking input derivatives seriously (extended abstract). In: Wiedermann, J., Van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644, pp. 645–654. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  34. Turi, D.: Functorial operational semantics and its denotational dual. PhD thesis, Free Univ. Amsterdam (1996)

    Google Scholar 

  35. Turi, D., Plotkin, G.: Towards a mathematical operational semantics. In: Logic in Computer Science, pp. 280–291. IEEE, Computer Science Press (1997)

    Google Scholar 

  36. Uustalu, T., Vene, V., Pardo, A.: Recursion schemes from comonads. Nordic Journ. Comput. 8(3), 366–390 (2001)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jacobs, B. (2006). A Bialgebraic Review of Deterministic Automata, Regular Expressions and Languages. In: Futatsugi, K., Jouannaud, JP., Meseguer, J. (eds) Algebra, Meaning, and Computation. Lecture Notes in Computer Science, vol 4060. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11780274_20

Download citation

  • DOI: https://doi.org/10.1007/11780274_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-35462-8

  • Online ISBN: 978-3-540-35464-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics