Skip to main content

Self-organizing Neural Architecture for Reinforcement Learning

  • Conference paper
Advances in Neural Networks - ISNN 2006 (ISNN 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3971))

Included in the following conference series:

Abstract

Self-organizing neural networks are typically associated with unsupervised learning. This paper presents a self-organizing neural architecture, known as TD-FALCON, that learns cognitive codes across multi-modal pattern spaces, involving states, actions, and rewards, and is capable of adapting and functioning in a dynamic environment with external evaluative feedback signals. We present a case study of TD-FALCON on a mine avoidance and navigation cognitive task, and illustrate its performance by comparing with a state-of-the-art reinforcement learning approach based on gradient descent backpropagation algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Carpenter, G.A., Grossberg, S., Rosen, D.B.: Fuzzy ART: Fast Stable Learning and Categorization of Analog Patterns by an Adaptive Resonance System. Neural Networks 4(6), 759–771 (1991)

    Article  Google Scholar 

  2. Carpenter, G.A., Grossberg, S.: Adaptive Resonance Theory. In: Arbib, M.A. (ed.) The Handbook of Brain Theory and Neural Networks, pp. 87–90. MIT Press, Cambridge (2003)

    Google Scholar 

  3. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press, Cambridge (1998)

    Google Scholar 

  4. Watkins, C.J.C.H., Dayan, P.: Q-learning. Machine Learning 8(3), 279–292 (1992)

    MATH  Google Scholar 

  5. Si, J., Barto, A.G., Powell, W.B., Wunsch, D. (eds.): Handbook of Learning and Approximate Dynamic Programming. Wiley-IEEE Press, Chichester (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tan, AH. (2006). Self-organizing Neural Architecture for Reinforcement Learning. In: Wang, J., Yi, Z., Zurada, J.M., Lu, BL., Yin, H. (eds) Advances in Neural Networks - ISNN 2006. ISNN 2006. Lecture Notes in Computer Science, vol 3971. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11759966_70

Download citation

  • DOI: https://doi.org/10.1007/11759966_70

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-34439-1

  • Online ISBN: 978-3-540-34440-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics