Skip to main content

A Patient-Gene Model for Temporal Expression Profiles in Clinical Studies

  • Conference paper
Research in Computational Molecular Biology (RECOMB 2006)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 3909))

Abstract

Pharmacogenomics and clinical studies that measure the temporal expression levels of patients can identify important pathways and biomarkers that are activated during disease progression or in response to treatment. However, researchers face a number of challenges when trying to combine expression profiles from these patients. Unlike studies that rely on lab animals or cell lines, individuals vary in their baseline expression and in their response rate. In this paper we present a generative model for such data. Our model represents patient expression data using two levels, a gene level which corresponds to a common response pattern and a patient level which accounts for the patient specific expression patterns and response rate. Using an EM algorithm we infer the parameters of the model. We used our algorithm to analyze multiple sclerosis patient response to Interferon-β. As we show, our algorithm was able to improve upon prior methods for combining patients data. In addition, our algorithm was able to correctly identify patient specific response patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Spellman, P.T., Sherlock, G., Zhang, M.Q., Iyer, V.R., et al.: Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisia by microarray hybridization. Mol. Biol. of the Cell. 9, 3273–3297 (1998)

    Google Scholar 

  2. Whitfield, M.L., Sherlock, G., Saldanha, A.J., Murray, J.I., et al.: Identification of genes periodically expressed in the human cell cycle and their expression in tumors. Mol. Biol. Cell. 13(6), 1977–2000 (2002)

    Article  Google Scholar 

  3. Inflammation and the Host Response to Injury, www.gluegrant.org

  4. Bar-Joseph, Z.: Analyzing time series gene expression data. Bioinformatics 20(16), 2493–2503 (2004)

    Article  Google Scholar 

  5. Nau, G.J., Richmond, J.F.L., Schlesinger, A., Jennings, E.G., et al.: Human Macrophage Activation Programs Induced by Bacterial Pathogens. PNAS 99, 1503–1508 (2002)

    Article  Google Scholar 

  6. Weinstock-Guttman, B., Badgett, D., Patrick, K., Hartrich, L., et al.: Genomic effects of IFN-beta in multiple sclerosis patients. J. Immunol. 171(5), 1503–1508 (2002)

    Google Scholar 

  7. Sterrenburg, E., Turk, R., Peter, A.C., Hoen, P.A., van Deutekom, J.C., et al.: Large-scale gene expression analysis of human skeletal myoblast differentiation. Neuromuscul Disord. 14(8-9), 507–518 (2004)

    Article  Google Scholar 

  8. Aach, J., Church, G.M.: Aligning gene expression time series with time warping algorithms. Bioinformatics 17, 495–508 (2001)

    Article  Google Scholar 

  9. Bar-Joseph, Z., Gerber, G., Jaakkola, T.S., Gifford, D.K., Simon, I.: Continuous Representations of Time Series Gene Expression Data. Journal of Computational Biology 3-4, 39–48 (2003)

    Google Scholar 

  10. Calvano, S.E., Xiao, W., Richards, D.R., Felciano, R.M., et al.: A network-based analysis of systemic inflammation in humans. Nature 437, 1032–1037 (2005)

    Article  Google Scholar 

  11. Gaffney, S., Smyth, P.: Joint Probabilistic Curve Clustering and Alignmen. In: Proceedings of The Eighteenth Annual Conference on Neural Information Processing Systems (NIPS) (2004)

    Google Scholar 

  12. Bar-Joseph, Z., Gerber, G., Jaakkola, T.S., Gifford, D.K., Simon, I.: Comparing the Continuous Representation of Time Series Expression Profiles to Identify Differentially Expressed Genes. PNAS 100(18), 10146–10151 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  13. Storey, J.D., Xiao, W., Leek, J.T., Tompkins, R.G., Davis, R.W.: Significance analysis of time course microarray experiments. PNAS 102(36), 12837–12842 (2005)

    Article  Google Scholar 

  14. Michalek, R., Tarantello, G.: Subharmonic solutions with prescribed minimal period for nonautonomous Hamiltonian systems. J. Diff. Eq. 72, 28–55 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  15. Tarantello, G.: Subharmonic solutions for Hamiltonian systems via a ZZ p pseudoindex theory. Annali di Matematica Pura (to appear)

    Google Scholar 

  16. Troyanskaya, O., Cantor, M., et al.: Missing value estimation methods for DNA microarrays. Bioinformatics 17, 520–525 (2001)

    Article  Google Scholar 

  17. Sharan, R., Shamir, R.: Algorithmic Approaches to Clustering Gene Expression Data. Current Topics in Computational Biology, 269–300 (2002)

    Google Scholar 

  18. Piegl, L., Tiller, W.: The NURBS Book. Springer, New York (1997)

    Google Scholar 

  19. James, G., Hastie, T.: Functional Linear Discriminant Analysis for Irregularly Sampled Curves. Journal of the Royal Statistical Society, Series B 63, 533–550 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  20. Xing, E.P., Jordan, M.I., Russell, S.: A generalized mean field algorithm for variational inference in exponential families. In: Proceedings of Uncertainty in Artificial Intelligence (UAI), pp. 583–591 (2003)

    Google Scholar 

  21. Supporting website: www.cs.cmu.edu/~zivbj/comb/combpatient.html

  22. Achiron, A., et al.: Blood transcriptional signatures of multiple sclerosis: unique gene expression of disease activity. Ann. Neurol. 55(3), 410–417 (2004)

    Article  Google Scholar 

  23. Takeba, Y., et al.: Txk, a member of nonreceptor tyrosine kinase of Tec family, acts as a Th1 cell-specific transcription factor and regulates IFN-gamma gene transcription. J. Immunol. 168(5), 2365–2370 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kaminski, N., Bar-Joseph, Z. (2006). A Patient-Gene Model for Temporal Expression Profiles in Clinical Studies. In: Apostolico, A., Guerra, C., Istrail, S., Pevzner, P.A., Waterman, M. (eds) Research in Computational Molecular Biology. RECOMB 2006. Lecture Notes in Computer Science(), vol 3909. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11732990_6

Download citation

  • DOI: https://doi.org/10.1007/11732990_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-33295-4

  • Online ISBN: 978-3-540-33296-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics