Skip to main content

I/O-Efficient Algorithms on Near-Planar Graphs

  • Conference paper
LATIN 2006: Theoretical Informatics (LATIN 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3887))

Included in the following conference series:

Abstract

Obtaining I/O-efficient algorithms for basic graph problems on sparse directed graphs is a long-standing open problem. While the best known upper bounds for most basic problems on such graphs with V vertices still require Ω(V) I/Os, optimal O(sort (V )) I/O algorithms are known for special classes of sparse graphs, like planar graphs and grid graphs. It is hard to accept that a problem becomes difficult as soon as the graph contains a few deviations from planarity. In this paper we extend the class of graphs on which basic graph problems can be solved I/O-efficiently. We give a characterization of near-planarity which covers a wide range of near-planar graphs, and obtain the first I/O-efficient algorithms for directed graphs that are near-planar.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abello, J., Buchsbaum, A.L., Westbrook, J.R.: A functional approach to external graph algorithms. Algorithmica 32(3), 437–458 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aggarwal, A., Vitter, J.S.: The Input/Output complexity of sorting and related problems. Communications of the ACM 31(9), 1116–1127 (1988)

    Article  MathSciNet  Google Scholar 

  3. Aleksandrov, L., Djidjev, H., Guo, H., Maheshwari, A.: Partitioning planar graphs with costs and weights. In: Mount, D.M., Stein, C. (eds.) ALENEX 2002. LNCS, vol. 2409, pp. 98–110. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  4. Arge, L.: The buffer tree: A technique for designing batched external data structures. Algorithmica 37(1), 1–24 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Arge, L., Brodal, G.S., Toma, L.: On external memory MST, SSSP and multiway planar graph separation. Journal of Algorithms 53(2), 186–206 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Arge, L., Meyer, U., Toma, L., Zeh, N.: On external-memory planar depth first search. Journal of Graph Algorithms 7(2), 105–129 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Arge, L., Toma, L.: Simplified external-memory algorithms for planar DAGs. In: Proc. Scandinavian Workshop on Algorithm Theory, pp. 493–503 (2004)

    Google Scholar 

  8. Arge, L., Toma, L., Zeh, N.: I/O-efficient topological sorting of planar DAGs. In: Proc. ACM Symposium on Parallel Algorithms and Architectures (2003)

    Google Scholar 

  9. Arge, L., Vengroff, D.E., Vitter, J.S.: External-memory algorithms for processing line segments in geographic information systems. In Proc. Eur. Symp. Algorithms. In: Spirakis, P.G. (ed.) ESA 1995. LNCS, vol. 979, pp. 295–310. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  10. Arge, L., Zeh, N.: I/O-efficient strong connectivity and depth-first search for directed planar graphs. In: Proc. IEEE Symp. on Found. of Computer Sc. (2003)

    Google Scholar 

  11. Bienstock, D., Dean, N.: Bounds for rectilinear crossing numbers. Journal of Graph Theory 17, 333–348 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  12. Buchsbaum, A.L., Goldwasser, M., Venkatasubramanian, S., Westbrook, J.R.: On external memory graph traversal. In: Proc. Symposium on Discrete Algorithms, pp. 859–860 (2000)

    Google Scholar 

  13. Chiang, Y.-J., Goodrich, M.T., Grove, E.F., Tamassia, R., Vengroff, D.E., Vitter, J.S.: External-memory graph algorithms. In: Proc. Symposium on Discrete Algorithms, pp. 139–149 (1995)

    Google Scholar 

  14. Crauser, A., Ferragina, P., Mehlhorn, K., Meyer, U., Ramos, E.: Randomized external-memory algorithms for some geometric problems. In: Proc. ACM Symposium on Computational Geometry, pp. 259–268 (1998)

    Google Scholar 

  15. Faria, L., de Figueiredo, C.M.H., de Mendonça Neto, C.F.X.: Splitting number is np-complete. Discrete Applied Mathematics 108, 65–83 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  16. Frederickson, G.N.: Fast algorithms for shortest paths in planar graphs, with applications. SIAM Journal on Computing 16, 1004–1022 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  17. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman & Co, New York (1979)

    MATH  Google Scholar 

  18. Garey, M.R., Johnson, D.S.: Crossing number is np-complete. SIAM Journal on Algebraic and Discrete Methods 4, 312–316 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kumar, V., Schwabe, E.: Improved algorithms and data structures for solving graph problems in external memory. In: Proc. IEEE Symposium on Parallel and Distributed Processing, pp. 169–177 (1996)

    Google Scholar 

  20. Liebers, A.: Planarizing graphs—a survey and annotated bibliography. Journal of Graph Algorithms and Applications 5(1), 1–74 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lipton, R.J., Tarjan, R.E.: A separator theorem for planar graphs. SIAM Journal of Applied Math 36, 177–189 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  22. Maheshwari, A., Zeh, N.: I/O-optimal algorithms for planar graphs using separators. In: Proc. Symposium on Discrete Algorithms, pp. 372–381 (2002)

    Google Scholar 

  23. Meyer, U., Sanders, P., Sibeyn, J.F. (eds.): Algorithms for Memory Hierarchies. LNCS, vol. 2625. Springer, Heidelberg (2003)

    MATH  Google Scholar 

  24. Pach, J., Tóth, G.: Graphs drawn with few crossings per edge. Combinatorica 17, 427–439 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  25. Watanabe, T., Ae, T., Nakamura, A.: On the np-hardness of edge-deletion and -contraction problems. Discrete Applied Mathematics 6, 63–78 (1983)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Haverkort, H., Toma, L. (2006). I/O-Efficient Algorithms on Near-Planar Graphs. In: Correa, J.R., Hevia, A., Kiwi, M. (eds) LATIN 2006: Theoretical Informatics. LATIN 2006. Lecture Notes in Computer Science, vol 3887. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11682462_54

Download citation

  • DOI: https://doi.org/10.1007/11682462_54

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-32755-4

  • Online ISBN: 978-3-540-32756-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics