Skip to main content

An Efficient Approximation Algorithm for Point Pattern Matching Under Noise

  • Conference paper
LATIN 2006: Theoretical Informatics (LATIN 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3887))

Included in the following conference series:

Abstract

Point pattern matching problems are of fundamental importance in various areas including computer vision and structural bioinformatics. In this paper, we study one of the more general problems, known as LCP (largest common point set problem): Let P and Q be two point sets in \({\mathbb R}^{3}\), and let ε ≥ 0 be a tolerance parameter, the problem is to find a rigid motion μ that maximizes the cardinality of subset I of Q, such that the Hausdorff distance dist(P,μ(I)) ≤ ε. We denote the size of the optimal solution to the above problem by LCP(P,Q). The problem is called exact-LCP for ε = 0, and tolerant-LCP when ε> 0 and the minimum interpoint distance is greater than ε. A β-distance-approximation algorithm for tolerant-LCP finds a subset I ⊆ Q such that |I| ≥ LCP(P,Q) and dist(P,μ(I)) ≤ βε for some β ≥ 1.

This paper has three main contributions. (1) We introduce a new algorithm, called T-hashing, which gives the fastest known deterministic 4-distance-approximation algorithm for tolerant-LCP. (2) For the exact-LCP, when the matched set is required to be large, we give a simple sampling strategy that improves the running times of all known deterministic algorithms, yielding the fastest known deterministic algorithm for this problem. (3) We use expander graphs to speed-up the T-hashing algorithm for tolerant-LCP when the size of the matched set is required to be large, at the expense of approximation in the matched set size. Our algorithms also work when the transformation μ is allowed to be scaling transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ajtai, M., Megiddo, N.: A Deterministic Poly (log log N)-Time N-Processor Algorithm for Linear Programming in Fixed Dimension. In: Proc. 24th ACM Symp. on Theory of Computing, pp. 327–338 (1992)

    Google Scholar 

  2. Alon, N., Spencer, J.: The Probabilistic Method. Wiley Interscience, Hoboken (2000)

    Book  MATH  Google Scholar 

  3. Akutsu, T.: Protein Structure Alignment Using Dynamic Programming and Iterative Improvement. IEICE Trans. on Information and Systems 12, 1629–1636 (1996)

    Google Scholar 

  4. Akutsu, T., Tamaki, H., Tokuyama, T.: Distribution of Distances and Triangles in a Point Set and Algorithms for Computing the Largest Common Point Sets. Discrete & Computational Geometry 20(3), 307–331 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  5. Akutsu, T., Kanaya, K., Ohyama, A., Fujiyama, A.: Point matching under non-uniform distortions. Discrete Applied Mathematics 127(1), 5–21 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Alt, H., Guibas, L.J.: Discrete Geometric Shapes: Matching, Interpolation, and Approximation. In: Sack, J.-R., Urrutia, J. (eds.) Handbook of Computational Geometry, pp. 121–153. Elsevier Science Publishers B.V. North-Holland, Amsterdam (1999)

    Google Scholar 

  7. Alt, H., Mehlhorn, K., Wagener, H., Welzl, E.: Congruence, Similarity, and Symmetries of Geometric Objects. Discrete & Computational Geometry 3, 237–256 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ambühl, C., Chakraborty, S., Gärtner, B.: Computing Largest Common Point Sets under Approximate Congruence. In: Paterson, M. (ed.) ESA 2000. LNCS, vol. 1879, pp. 52–64. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  9. Biswas, S., Chakraborty, S.: Fast Algorithms for Determining Protein Structure Similarity. In: Workshop on Bioinformatics and Computational Biology, Hyderabad, India (2001)

    Google Scholar 

  10. Chakraborty, S., Biswas, S.: Approximation Algorithms for 3-D Commom Substructure Identification in Drug and Protein Molecules. In: Dehne, F., Gupta, A., Sack, J.-R., Tamassia, R. (eds.) WADS 1999. LNCS, vol. 1663, pp. 253–264. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  11. Cardoze, D., Schulman, L.: Pattern Matching for Spatial Point Sets. In: Proc. 39th Annual IEEE Symp. on Foundations of Computer Science, pp. 156–165 (1998)

    Google Scholar 

  12. Chew, L.P., Dor, D., Efrat, A., Kedem, K.: Geometric Pattern Matching in d-Dimensional Space. Discrete and Computational Geometry 21, 257–274 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  13. Choi, V., Goyal, N.: A Combinatorial Shape Matching Algorithm for Rigid Protein Docking. In: Sahinalp, S.C., Muthukrishnan, S.M., Dogrusoz, U. (eds.) CPM 2004. LNCS, vol. 3109, pp. 285–296. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  14. Finn, P., Kavraki, L., Latombe, J.-C., Motwani, R., Shelton, C., Venkatasubramanian, S., Yao, A.: RAPID: Randomized Pharmacophore Identification in Drug Design. In: The 13th Symposium on Computational Geometry (1997); Computational Geometry: Theory and Applications 10(4) (1998)

    Google Scholar 

  15. Gavrilov, M., Indyk, P., Motwani, R., Venkatasubramanian, S.: Combinatorial and Experimental Methods for Approximate Point Pattern Matching. Algorithmica 38(1), 59–90 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Goodrich, M.T., Mitchell, J.S.B., Orletsky, M.W.: Approximate Geometric Pattern Matching Under Rigid Motions. IEEE Trans. Pattern Anal. Mach. Intell. 21(4), 371–379 (1999)

    Article  Google Scholar 

  17. Grimson, W.E.L., Huttenlocher, D.P.: On the Sensitivity of Geometric Hashing. In: Proc. of the 3rd Int’l Conference on Computer Vision, pp. 334–338 (1990)

    Google Scholar 

  18. Grimson, W.E.L., Huttenlocher, D.P.: On the Sensitivity of Hough Transform for Object Recognition. IEEE Trans. on Pattern Analysis and Machine Intell. 12(3) (1990)

    Google Scholar 

  19. Hecker, Y., Bolle, R.: On Geometric Hashing and the Generalized Hough Transform. IEEE Trans. on Systems, Man and Cybernetics 24, 1328–1338 (1994)

    Article  Google Scholar 

  20. Heffernan, P.J., Schirra, S.: Approximate Decision Algorithms for Point Set Congruence. Comput. Geom. 4, 137–156 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  21. Indyk, P., Motwani, R., Venkatasubramanian, S.: Geometric Matching under Noise: Combinatorial Bounds and Algorithms. In: The 10th ACM-SIAM Symp. on Discrete Algorithms (1999)

    Google Scholar 

  22. Irani, S., Raghavan, P.: Combinatorial and Experimental Results for Randomized Point Matching Algorithms. In: The 12th Symposium on Computational Geometry (1996); Comput. Geom. 12(1-2), 17–31 (1999)

    Google Scholar 

  23. Katz, M., Sharir, M.: An Expander-based Approach to Geometric Optimization. SIAM J. Comput. 26(5), 1384–1408 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kenyon, C., Rabani, Y., Sinclair, A.: Low Distortion Maps Between Point Sets. In: Proc. of the 36th Annual ACM Symp. on Theory of Computing (2004)

    Google Scholar 

  25. Krivelevich, M., Sudakov, B.: Pseudo-random Graphs (preprint), Available at, http://www.math.tau.ac.il/~krivelev/papers.html

  26. Lamdan, Y., Wolfson, H.J.: Geometric Hashing: A General and Efficient Model-based Recognition Scheme. In: The 2nd Int’l Conference on Computer Vision, pp. 238–249 (1988)

    Google Scholar 

  27. Olson, C.F.: Efficient Pose Clustering Using a Randomized Algorithm. Int’l J. of Computer Vision 23(2), 131–147 (1997)

    Article  Google Scholar 

  28. Wolfson, H.J., Rigoutsos, I.: Geometric Hashing: an Overview. IEEE Comput. Science and Engineering 4, 10–21 (1997)

    Article  Google Scholar 

  29. Nussinov, R., Wolfson, H.J.: Efficient Detection of Three - Dimensional Motifs In Biological Macromolecules by Computer Vision Techniques. Proc. of the Nat’l Academy of Sciences 88, 10495–10499 (1991)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Choi, V., Goyal, N. (2006). An Efficient Approximation Algorithm for Point Pattern Matching Under Noise. In: Correa, J.R., Hevia, A., Kiwi, M. (eds) LATIN 2006: Theoretical Informatics. LATIN 2006. Lecture Notes in Computer Science, vol 3887. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11682462_30

Download citation

  • DOI: https://doi.org/10.1007/11682462_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-32755-4

  • Online ISBN: 978-3-540-32756-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics