Skip to main content

Mechanical Theorem Proving in Computational Geometry

  • Conference paper
Automated Deduction in Geometry (ADG 2004)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3763))

Included in the following conference series:

Abstract

Algorithms for solving geometric problems are widely used in many scientific disciplines. Applications range from computer vision and robotics to molecular biology and astrophysics. Proving the correctness of these algorithms is vital in order to boost confidence in them. By specifying the algorithms formally in a theorem prover such as Isabelle, it is hoped that rigorous proofs showing their correctness will be obtained. This paper outlines our current framework for reasoning about geometric algorithms in Isabelle. It focuses on our case study of the convex hull problem and shows how Hoare logic can be used to prove the correctness of such algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chou, S.C., Gao, X.S., Zhang, J.Z.: Automated generation of readable proofs with geometric invariants, I. multiple and shortest proof generation. Journal of Automated Reasoning 17, 325–347 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  2. Church, A.: A formulation of the simple theory of type. Journal of Symbolic Logic 5, 56–68 (1940)

    Article  MATH  MathSciNet  Google Scholar 

  3. Gordon, M.: Mechanizing Programming Logics in Higher Order Logic. In: Birtwistle, G., Subrahmanyam, P.A. (eds.) Current Trends in Hardware Verification and Automated Theorem Proving. Springer, Heidelberg (1989)

    Google Scholar 

  4. Gordon, M., Melham, T.: Introduction to HOL: A theorem proving environment for Higher Order Logic. Cambridge University Press, Cambridge (1993)

    MATH  Google Scholar 

  5. Graham, R.L.: An efficient algorithm for determining the convex hull of a finite planar set. Info. Proc. Lett. 1, 132–133 (1972)

    Article  MATH  Google Scholar 

  6. Hilbert, D.: The Foundations of Geometry. In: Hilbert, D. (ed.) The Open Court Company, 11th edn. Translation by Leo Unger (2001)

    Google Scholar 

  7. Hoare, C.A.R.: An axiomatic basis for computer programming. Communications of the ACM 12(10), 576–580 (1969)

    Article  MATH  Google Scholar 

  8. Knuth, D.E.: Axioms and Hulls. LNCS, vol. 606. Springer, Heidelberg (1992)

    MATH  Google Scholar 

  9. Meikle, L., Fleuriot, J.: Formalizing Hilbert’s Grundlagen in Isabelle/Isar. In: Basin, D., Wolff, B. (eds.) TPHOLs 2003. LNCS, vol. 2758, pp. 319–334. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  10. Nipkow, T.: Hoare Logics in Isabelle/HOL. In: Proof and System Reliability. Kluwer, Dordrecht (2002)

    Google Scholar 

  11. O’Rourke, J.: Computational Geometry in C. Cambridge University Press, Cambridge (1994)

    MATH  Google Scholar 

  12. Paulson, L.C.: Isabelle. LNCS, vol. 828. Springer, Heidelberg (1994)

    MATH  Google Scholar 

  13. Pichardie, D., Bertot, Y.: Formalizing Convex Hull Algorithms. In: Boulton, R.J., Jackson, P.B. (eds.) TPHOLs 2001. LNCS, vol. 2152, pp. 346–361. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  14. Preparata, F.P., Shamos, M.I.: Computational Geometry: An Introduction. Springer, Heidelberg (1985)

    Google Scholar 

  15. Stark, J., Ireland, A.: Invariant Discovery via Failed Proof Attempts. In: Flener, P. (ed.) LOPSTR 1998. LNCS, vol. 1559, p. 271. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Meikle, L.I., Fleuriot, J.D. (2006). Mechanical Theorem Proving in Computational Geometry. In: Hong, H., Wang, D. (eds) Automated Deduction in Geometry. ADG 2004. Lecture Notes in Computer Science(), vol 3763. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11615798_1

Download citation

  • DOI: https://doi.org/10.1007/11615798_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-31332-8

  • Online ISBN: 978-3-540-31363-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics