Skip to main content

An Adaptive Variational Model for Image Decomposition

  • Conference paper
Energy Minimization Methods in Computer Vision and Pattern Recognition (EMMCVPR 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3757))

Abstract

We propose a new model for image decomposition which separates an image into a cartoon, consisting only of geometric objects, and an oscillatory component, consisting of textures and noise. The model is given in a variational formulation with adaptive regularization norms for both the cartoon and texture part. The energy for the cartoon interpolates between total variation regularization and isotropic smoothing, while the energy for the textures interpolates between Meyer’s G norm and the H − − 1 norm. These energies are dual in the sense of the Legendre-Fenchel transform and their adaptive behavior preserves key features such as object boundaries and textures while avoiding staircasing in what should be smooth regions. Existence and uniqueness of a solution is established and experimental results demonstrate the effectiveness of the model for both grayscale and color image decomposition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acar, R., Vogel, C.R.: Analysis of bounded variation penalty methods for ill-posed problems. Inverse Problems 10(6), 1217–1229 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  2. Aubert, G., Aujol, J.-F.: Modeling very oscillating signals. Application to image processing. Appl. Math. Optim. 51(2), 163–182 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  3. Aujol, J.-F., Aubert, G., Blanc-Feraud, L., Chambolle, A.: Image decomposition application to sar images. In: Griffin, L.D., Lillholm, M. (eds.) Scale-Space 2003. LNCS, vol. 2695, pp. 297–312. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  4. Aujol, J.-F., Chambolle, A.: Dual norms and image decomposition models. Int. J. Computer Vision 63(1), 85–104 (2005)

    Article  MathSciNet  Google Scholar 

  5. Blomgren, P., Chan, T.F., Mulet, P., Vese, L., Wan, W.L.: Variational PDE models and methods for image processing. In: Numerical analysis 1999 (Dundee). CRC Res. Notes Math, vol. 420, pp. 43–67. Chapman & Hall, Boca Raton (2000)

    Google Scholar 

  6. Chambolle, A.: An algorithm for total variation minimization and applications. J. Math. Imaging Vision 20(1-2), 89–97 (2004)

    MathSciNet  Google Scholar 

  7. Chambolle, A., DeVore, R.A., Lee, N.-y., Lucier, B.J.: Nonlinear wavelet image processing: variational problems, compression, and noise removal through wavelet shrinkage. IEEE Trans. Image Process. 7(3), 319–335 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  8. Chambolle, A., Lions, P.-L.: Image recovery via total variation minimization and related problems. Numer. Math. 76(2), 167–188 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  9. Chan, T.F., Esedoglu, S., Park, F.: A fourth order dual method for staircase reduction in texture extraction and image restoration problems. Technical Report, University of California, Los Angeles, CA, CAM05-28 (2005)

    Google Scholar 

  10. Chan, T.F., Esedoglu, S., Park, F.: Image decomposition combining staircase reduction and texture extraction. Technical Report, University of California, Los Angeles, CA, CAM05-18 (2005)

    Google Scholar 

  11. Chen, Y., Levine, S., Rao, M.: Variable exponent, linear growth functionals in image processing. Submitted to SIAM J. Appl. Math. (2004)

    Google Scholar 

  12. Donoho, D.L., Johnstone, I.M.: Adapting to unknown smoothness via wavelet shrinkage. J. Amer. Statist. Assoc. 90(432), 1200–1224 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  13. Ekeland, I., Temam, R.: Convex analysis and variational problems. Translated from the French, Studies in Mathematics and it’s Applications, vol. 1. North-Holland Publishing Co., Amsterdam (1976)

    MATH  Google Scholar 

  14. Evans, L.C., Gariepy, R.F.: Measure theory and fine properties of functions. Studies in Advanced Mathematics. CRC Press, Boca Raton (1992)

    MATH  Google Scholar 

  15. Gousseau, Y., Morel, J.-M.: Are natural images of bounded variation? SIAM J. Math. Anal. 33(3), 634–648 (2001) (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  16. Le, T.M., Vese, L.: Image decomposition using total variation and div(bmo). CAM04-76, UCLA (2004)

    Google Scholar 

  17. Malgouyres, F.: Minimizing the total variation under a general convex constraint for image restoration. IEEE Trans. Image Process. 11(12), 1450–1456 (2002)

    Article  MathSciNet  Google Scholar 

  18. Meyer, Y.: Oscillating patterns in image processing and nonlinear evolution equations. University Lecture Series, vol. 22. American Mathematical Society, Providence (2001); The fifteenth Dean Jacqueline B. Lewis memorial lectures

    MATH  Google Scholar 

  19. Misner, T., Ramsey, M., Arrowsmith, J.: Multi-frequency, multitemporal brush fire scar analysis in a semi-arid urban environment: Implications for future fire and flood hazards. In: 2002 meeting of the American Geological Society (2002)

    Google Scholar 

  20. Osher, S., Solé, A., Vese, L.: Image decomposition and restoration using total variation minimization and the \(H\sp {-1}\) norm. Multiscale Model. Simul. 1(3), 349–370 (2003) (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  21. Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60, 259–268 (1992)

    Article  MATH  Google Scholar 

  22. Vese, L.A., Osher, S.J.: Modeling textures with total variation minimization and oscillating patterns in image processing. J. Sci. Comput. 19(1-3), 553–572 (2003); Special issue in honor of the sixtieth birthday of Stanley Osher

    Article  MATH  MathSciNet  Google Scholar 

  23. Vese, L.A., Osher, S.J.: Image denoising and decomposition with total variation minimization and oscillatory functions. J. Math. Imaging Vision 20(1-2), 7–18 (2004); Special issue on mathematics and image analysis

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Levine, S.E. (2005). An Adaptive Variational Model for Image Decomposition. In: Rangarajan, A., Vemuri, B., Yuille, A.L. (eds) Energy Minimization Methods in Computer Vision and Pattern Recognition. EMMCVPR 2005. Lecture Notes in Computer Science, vol 3757. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11585978_25

Download citation

  • DOI: https://doi.org/10.1007/11585978_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-30287-2

  • Online ISBN: 978-3-540-32098-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics