Skip to main content

Coding of Objects in Low-Level Visual Cortical Areas

  • Conference paper
Artificial Neural Networks: Biological Inspirations – ICANN 2005 (ICANN 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3696))

Included in the following conference series:

Abstract

We develop a neural network architecture to help model the creation of visual temporal object representations. We take visual input to be hard-wired up to and including V1 (as an orientation-filtering system). We then develop architectures for afferents to V2 and thence to V4, both of which are trained by a causal Hebbian law. We use an incremental approach, using sequences of increasingly complex stimuli at an increasing level of the hierarchy. The V2 representations are shown to encode angles, and V4 is found sensitive to shapes embedded in figures. These results are compared to recent experimental data, supporting the incremental training scheme and associated architecture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Somers, D.C., Nelson, S.B., Sur, M.: An Emergent Model of Orientation Selectivity in Cat Visual Cortical Simple Cells. J. Neurosci. 15, 5448–5465 (2005)

    Google Scholar 

  2. Troyer, T.W., Krukowski, A.E., Priebe, N.J., Miller, K.D.: Contrast-Invariant Orientation Tuning in Cat Visual Cortex: Thalamocortical Input Tuning and Correlation-Based Intracortical Activity. J. Neurosci. 18, 5908–5927 (1998)

    Google Scholar 

  3. Lauritsen, T.Z., Miller, K.D.: Different Roles for Simple-Cell and Complex-Cell Inhibition. J. Neurosci. 23, 10201–10213 (2003)

    Google Scholar 

  4. Ito, M., Komatsu, H.: Representation of Angles Embedded within Contour Stimuli in Area V2 of Macaque Monkeys. J. Neurosci. 24, 3313–3324 (2004)

    Article  Google Scholar 

  5. Riesenhuber, M., Poggio, T.: Hierarchical models of object recognition in cortex. Nature Neurosci. 2, 1019–1025 (1999)

    Article  Google Scholar 

  6. Riesenhuber, M., Poggio, T.: Models of object recognition. Nature Neurosci. (suppl. 3), 1199–1204 (2000)

    Google Scholar 

  7. Giese, M., Leopold, D.A.: Physiologically inspired neural model for the encoding of face spaces (2004) (preprint)

    Google Scholar 

  8. Fukushima, K.: Neocognitron capable of incremental learning. Neural Networks 17, 37–46 (2004)

    Article  MATH  Google Scholar 

  9. Deco, G., Rolls, E.: Object-based visual neglect: a computational hypothesis. Eur. J. Neurosci. 16, 1994–2000 (2002)

    Article  Google Scholar 

  10. Van der Velde, F., de Kamps, M.: From Knowing What to Knowing Where: Modeling Object-based Attention with Feedback Disinhibition of Activation. J. Cog. Neursoci. 13, 479–491 (2001)

    Article  Google Scholar 

  11. Pasupathy, A., Connor, C.E.: Shape Representation in Area V4: Position-Specific Tuning for Boundary Configuration. J. Neurophysiol. 86, 2505–2519 (2001)

    Google Scholar 

  12. Hegde, J., Van Essen, D.C.: Selection for Complex Shapes in Primate Visual Area V2. J. Neurosci. 20(RC61), 1–6 (2000)

    Google Scholar 

  13. Felleman, D.J., van Essen, D.C.: Distributed hierarchical processing in the primate cerebral cortex. Cerebral Cortex 1, 1–47 (1991)

    Article  Google Scholar 

  14. Bi, G.-Q., Poo, M.-M.: Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J. Neurosci. 18, 10464–10472 (1998)

    Google Scholar 

  15. Dan, Y., Poo, M.-M.: Spike Timing-Dependent Plasticity of Neural Circuits. Neuron 44, 23–30 (2004)

    Article  Google Scholar 

  16. Taylor, J., Hartley, M., Taylor, N.: Attention as Sigma-Pi Controlled Ach-Based Feedback. In: IJCNN 2005 (2005) (submitted)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Taylor, N.R., Hartley, M., Taylor, J.G. (2005). Coding of Objects in Low-Level Visual Cortical Areas. In: Duch, W., Kacprzyk, J., Oja, E., Zadrożny, S. (eds) Artificial Neural Networks: Biological Inspirations – ICANN 2005. ICANN 2005. Lecture Notes in Computer Science, vol 3696. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11550822_10

Download citation

  • DOI: https://doi.org/10.1007/11550822_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28752-0

  • Online ISBN: 978-3-540-28754-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics