Skip to main content

On Discovering Moving Clusters in Spatio-temporal Data

  • Conference paper
Advances in Spatial and Temporal Databases (SSTD 2005)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 3633))

Included in the following conference series:

Abstract

A moving cluster is defined by a set of objects that move close to each other for a long time interval. Real-life examples are a group of migrating animals, a convoy of cars moving in a city, etc. We study the discovery of moving clusters in a database of object trajectories. The difference of this problem compared to clustering trajectories and mining movement patterns is that the identity of a moving cluster remains unchanged while its location and content may change over time. For example, while a group of animals are migrating, some animals may leave the group or new animals may enter it. We provide a formal definition for moving clusters and describe three algorithms for their automatic discovery: (i) a straight-forward method based on the definition, (ii) a more efficient method which avoids redundant checks and (iii) an approximate algorithm which trades accuracy for speed by borrowing ideas from the MPEG-2 video encoding. The experimental results demonstrate the efficiency of our techniques and their applicability to large spatio-temporal datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hadjieleftheriou, M., Kollios, G., Gunopulos, D., Tsotras, V.J.: On-line discovery of dense areas in spatio-temporal databases. In: Hadzilacos, T., Manolopoulos, Y., Roddick, J., Theodoridis, Y. (eds.) SSTD 2003. LNCS, vol. 2750. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  2. Gaffney, S., Smyth, P.: Trajectory clustering with mixtures of regression models. In: Proc. of ICDM, pp. 63–72 (1999)

    Google Scholar 

  3. Ester, M., Kriegel, H.P., Sander, J., Wimmer, M., Xu, X.: Incremental clustering for mining in a data warehousing environment. In: Proc. of VLDB, pp. 323–333 (1998)

    Google Scholar 

  4. Nassar, S., Sander, J., Cheng, C.: Incremental and effective data summarization for dynamic hierarchical clustering. In: Proc. of ACM SIGMOD, pp. 467–478 (2004)

    Google Scholar 

  5. Martin, E., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proc. of KDD (1996)

    Google Scholar 

  6. Kaufman, L., Rousueeuw, P.: Finding Groups in Data: an Introduction to Cluster Analysis. John Wiley and Sons, Chichester (1990)

    Google Scholar 

  7. Ng, R.T., Han, J.: Efficient and effective clustering methods for spatial data mining. In: Proc. of VLDB (1994)

    Google Scholar 

  8. Zhang, T., Ramakrishnan, R., Livny, M.: BIRCH: An efficient data clustering method for very large databases. In: Proc. of ACM SIGMOD (1996)

    Google Scholar 

  9. Guha, S., Rastogi, R., Shim, K.: CURE: An efficient clustering algorithm for large databases. In: Proc. of ACM SIGMOD (1998)

    Google Scholar 

  10. Nanopoulos, A., Theodoridis, Y., Manolopoulos, Y.: C2P: Clustering based on closest pairs. In: Proc. of VLDB (2001)

    Google Scholar 

  11. Ankerst, M., Breunig, M., Kriegel, H.P., Sander, J.: OPTICS: Ordering points to identify the clustering structure. In: Proc. of ACM SIGMOD, pp. 49–60 (1999)

    Google Scholar 

  12. Vlachos, M., Kollios, G., Gunopulos, D.: Discovering similar multidimensional trajectories. In: Proc. of ICDE, pp. 673–684 (2002)

    Google Scholar 

  13. Das, G., Lin, K.I., Mannila, H., Renganathan, G., Smyth, P.: Rule discovery from time series. In: Proc. of KDD, pp. 16–22 (1998)

    Google Scholar 

  14. Li, C.S., Yu, P.S., Castelli, V.: Malm: A framework for mining sequence database at multiple abstraction levels. In: Proc. of CIKM, pp. 267–272 (1998)

    Google Scholar 

  15. Kriegel, H.P., Kröoger, P., Gotlibovich, I.: Incremental OPTICS: Efficient computation of updates in a hierarchical cluster ordering. In: Proc. of DaWaK, pp. 224–233 (2003)

    Google Scholar 

  16. Breunig, M.M., Kriegel, H.P., Kröger, P., Sander, J.: Data bubbles: Quality preserving performance boosting for hierarchical clustering. In: Proc. of ACM SIGMOD (2001)

    Google Scholar 

  17. Larsen, B., Aone, C.: Fast and effective text mining using linear-time document clustering. In: Proc. of KDD, pp. 16–22 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kalnis, P., Mamoulis, N., Bakiras, S. (2005). On Discovering Moving Clusters in Spatio-temporal Data. In: Bauzer Medeiros, C., Egenhofer, M.J., Bertino, E. (eds) Advances in Spatial and Temporal Databases. SSTD 2005. Lecture Notes in Computer Science, vol 3633. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11535331_21

Download citation

  • DOI: https://doi.org/10.1007/11535331_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28127-6

  • Online ISBN: 978-3-540-31904-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics