Skip to main content

On Round-Efficient Argument Systems

  • Conference paper
Automata, Languages and Programming (ICALP 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3580))

Included in the following conference series:

Abstract

We consider the problem of constructing round-efficient public-coin argument systems, that is, interactive proof systems that are only computationally sound with a constant number of rounds. We focus on argument systems for NTime (T(n)) where either the communication complexity or the verifier’s running time is subpolynomial in T(n), such as Kilian’s argument system for NP [Kil92] and universal arguments [BG02,Mic00]. We begin with the observation that under standard complexity assumptions, such argument systems require at least 2 rounds. Next, we relate the existence of non-trivial 2-round argument systems to that of hard-on-average search problems in NP and that of efficient public-coin zero-knowledge arguments for NP. Finally, we show that the Fiat-Shamir paradigm [FS86] and Babai-Moran round reduction [BM88] fails to preserve computational soundness for some 3-round and 4-round argument systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barak, B.: How to go beyond the black-box simulation barrier. In: Proc. 42nd FOCS (2001)

    Google Scholar 

  2. Barak, B.: Non-Black-Box Techniques in Cryptography. Ph.D., Weizmann Institute of Science (January 2004)

    Google Scholar 

  3. Brassard, G., Chaum, D., Crépeau, C.: Minimum disclosure proofs of knowledge. JCSS 37(2), 156–189 (1988)

    MATH  Google Scholar 

  4. Barak, B., Goldreich, O.: Universal arguments and their applications. In: Proc. CCC 2002 (2002)

    Google Scholar 

  5. Bellare, M., Impagliazzo, R., Naor, M.: Does parallel repetition lower the error in computationally sound protocols? In: Proc. 38th FOCS (1997)

    Google Scholar 

  6. Barak, B., Lindell, Y., Vadhan, S.: Lower bounds for non-black-box zero knowledge. Cryptology ePrint Archive, Report 2004/226 (2004), Extended abstract in Proc. 44th FOCS (2003)

    Google Scholar 

  7. Babai, L., Moran, S.: Arthur-Merlin games: a randomized proof system, and a hierarchy of complexity class. JCSS 36(2), 254–276 (1988)

    MATH  MathSciNet  Google Scholar 

  8. Barak, B., Pass, R.: On the possibility of one-message weak zero-knowledge. In: Proc. 1st TCC (2004)

    Google Scholar 

  9. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited. In: Proc. 30th STOC (1998)

    Google Scholar 

  10. Dwork, C., Langberg, M., Naor, M., Nissim, K., Reingold, O.: Succint proofs for NP and spooky interactions (2004) (manuscript)

    Google Scholar 

  11. Dwork, C., Naor, M.: Zaps and their applications. In: Proc. 41st FOCS (2000)

    Google Scholar 

  12. Dwork, C., Naor, M., Reingold, O., Stockmeyer, L.: Magic functions. JACM 50(6), 852–921 (2003)

    Article  MathSciNet  Google Scholar 

  13. Feige, U., Lapidot, D., Shamir, A.: Multiple noninteractive zero knowledge proofs under general assumptions. SICOMP 29(1), 1–28 (1999)

    MATH  MathSciNet  Google Scholar 

  14. Fortnow, L.: The complexity of perfect zero-knowledge. Advances in Computing Research 5, 429–442 (1989)

    Google Scholar 

  15. Fiat, A., Shamir, A.: How to prove to yourself: practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987)

    Google Scholar 

  16. Goldreich, O., Håstad, J.: On the complexity of interactive proofs with bounded communication. IPL 67(4), 205–214 (1998)

    Article  Google Scholar 

  17. Goldwasser, S., Kalai, Y.T.: On the (in)security of the Fiat-Shamir paradigm. In: Proc. 44th FOCS (2003)

    Google Scholar 

  18. Goldreich, O., Oren, Y.: Definitions and properties of zero-knowledge proof systems. J. Cryptology 7(1), 1–32 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  19. Goldreich, O.: Foundations of Cryptography: Basic Tools. Cambridge University Press, Cambridge (2001)

    Book  MATH  Google Scholar 

  20. Gennaro, R., Trevisan, L.: Lower bounds on efficiency of generic cryptographic constructions. In: Proc. 41st FOCS (2000)

    Google Scholar 

  21. Kilian, J.: A note on efficient zero-knowledge proofs and arguments. In: Proc. 24th STOC (1992)

    Google Scholar 

  22. Kilian, J., Petrank, E.: An efficient noninteractive zero-knowledge proof system for NP with general assumptions. J. Cryptology 11(1), 1–27 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  23. Micali, S.: Computationally sound proofs. SICOMP 30(4), 1253–1298 (2000)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wee, H. (2005). On Round-Efficient Argument Systems. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds) Automata, Languages and Programming. ICALP 2005. Lecture Notes in Computer Science, vol 3580. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11523468_12

Download citation

  • DOI: https://doi.org/10.1007/11523468_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-27580-0

  • Online ISBN: 978-3-540-31691-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics