Skip to main content

Compact Genetic Codes as a Search Strategy of Evolutionary Processes

  • Conference paper
Foundations of Genetic Algorithms (FOGA 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3469))

Included in the following conference series:

Abstract

The choice of genetic representation crucially determines the capability of evolutionary processes to find complex solutions in which many variables interact. The question is how good genetic representations can be found and how they can be adapted online to account for what can be learned about the structure of the problem from previous samples. We address these questions in a scenario that we term indirect Estimation-of-Distribution: We consider a decorrelated search distribution (mutational variability) on a variable length genotype space. A one-to-one encoding onto the phenotype space then needs to induce an adapted phenotypic variability incorporating the dependencies between phenotypic variables that have been observed successful previously. Formalizing this in the framework of Estimation-of-Distribution Algorithms, an adapted phenotypic variability can be characterized as minimizing the Kullback-Leibler divergence to a population of previously selected individuals (parents). Our core result is a relation between the Kullback-Leibler divergence and the description length of the encoding in the specific scenario, stating that compact codes provide a way to minimize this divergence. A proposed class of Compression Evolutionary Algorithms and preliminary experiments with an L-system compression scheme illustrate the approach. We also discuss the implications for the self-adaptive evolution of genetic representations on the basis of neutrality (σ-evolution) towards compact codes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amari, S.: Information geometry on hierarchy of probability distributions. IEEE Transactions on Information Theory 47(5), 1701–1711 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  2. Baluja, S.: Population-based incremental learning: A method for integrating genetic search based function optimization and competitive learning. Technical Report CMU-CS-94-163, Comp. Sci. Dep., Carnegie Mellon U. (1994)

    Google Scholar 

  3. Baluja, S., Davies, S.: Using optimal dependency-trees for combinatorial optimization: Learning the structure of the search space. In: Proc. of Fourteenth Int. Conf. on Machine Learning (ICML 1997), pp. 30–38 (1997)

    Google Scholar 

  4. Barbulescu, L., Watson, J.-P., Whitley, D.: Dynamic representations and escaping local optima: Improving genetic algorithms and local search. In: Seventeenth National Conference on Artificial Intelligence (AAAI), pp. 879–884 (2000)

    Google Scholar 

  5. Barron, A., Rissanen, J., Yu, B.: The minimum description length principle in coding and modeling. IEEE Transactions on Information Theory 44, 2743–2760 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  6. de Bonet, J.S., Isbell Jr., C.L., Viola, P.: MIMIC: Finding optima by estimating probability densities. In: Mozer, M.C., Jordan, M.I., Petsche, T. (eds.) Advances in Neural Information Processing Systems, vol. 9, p. 424. The MIT Press, Cambridge (1997)

    Google Scholar 

  7. de Jong, E.D.: Representation development from Pareto-Coevolution. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2724, Springer, Heidelberg (2003)

    Google Scholar 

  8. Halder, G., Callaerts, P., Gehring, W.: Induction of ectopic eyes by targeted expression of the eyeless gene in Drosophila. Science 267, 1788–1792 (1995)

    Article  Google Scholar 

  9. Hansen, N., Ostermeier, A.: Completely derandomized self-adaption in evolutionary strategies. Evolutionary Computation 9, 159–195 (2001)

    Article  Google Scholar 

  10. Heckendorn, R.B., Wright, A.H.: Efficient linkage discovery by limited probing. Evolutionary Computation (2004) (accepted for publication)

    Google Scholar 

  11. Hornby, G.S., Pollack, J.B.: The advantages of generative grammatical encodings for physical design. In: Proc. of 2001 Congress on Evolutionary Computation (CEC 2001), pp. 600–607. IEEE Press, Los Alamitos (2001)

    Chapter  Google Scholar 

  12. Liepins, G.E., Vose, M.D.: Representation issues in Genetic Algorithms. Journal of Experimental and Theoretical Artificial Intelligence 2 (1990)

    Google Scholar 

  13. Nevill-Manning, C.G., Witten, I.H.: Identifying hierarchical structure in sequences: A linear-time algorithm. Journal of Artificial Intelligence Research 7, 67–82 (1997)

    MATH  Google Scholar 

  14. Nordin, P., Banzhaf, W.: Complexity compression and evolution. In: Eshelman, L. (ed.) Genetic Algorithms: Proc. of Sixth International Conf (ICGA 1995), pp. 310–317, 15-19. Morgan Kaufmann, Pittsburgh (1995)

    Google Scholar 

  15. Pelikan, M., Goldberg, D.E.: Hierarchical BOA solves Ising spin glasses and MAXSAT. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2724, pp. 1271–1282. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  16. Pelikan, M., Goldberg, D.E., Cantú-Paz, E.: Linkage problem, distribution estimation, and Bayesian networks. Evolutionary Computation 9, 311–340 (2000)

    Article  Google Scholar 

  17. Pelikan, M., Goldberg, D.E., Lobo, F.: A survey of optimization by building and using probabilistic models. Technical Report IlliGAL-99018, Illinois Genetic Algorithms Laboratory (1999)

    Google Scholar 

  18. Rothlauf, F., Goldberg, D.E.: Redundant representations in Evolutionary Computation. Evolutionary Computation 11, 381–415 (2003)

    Article  Google Scholar 

  19. Stephens, C.R., Vargas, J.M.: Effective fitness as an alternative paradigm for evolutionary computation I: General formalism. Genetic Programming and Evolvable Machines 1, 363–378 (2000)

    Article  MATH  Google Scholar 

  20. Toussaint, M.: Demonstrating the evolution of complex genetic representations: An evolution of artificial plants. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2724, pp. 86–97. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  21. Toussaint, M.: The evolution of genetic representations and modular neural adaptation, April 2003. PhD thesis, Institut für Neuroinformatik, Ruhr-Universiät- Bochum, Germany. Published with the Logos Verlag Berlin, 173 pages (2004) ISBN 3-8325- 0579-2

    Google Scholar 

  22. Toussaint, M.: On the evolution of phenotypic exploration distributions. In: Cotta, C., De Jong, K., Poli, R., Rowe, J. (eds.) Foundations of Genetic Algorithms 7 (FOGA VII), pp. 169–182. Morgan Kaufmann, San Francisco (2003)

    Google Scholar 

  23. Toussaint, M.: Notes on information geometry and evolutionary processes (2004) Los Alamos pre-print nlin.AO/0408040

    Google Scholar 

  24. Vitányi, P.M.B., Li, M.: Minimum Description Length induction, Bayesianism, and Kolmogorov complexity. IEEE Trans. Inform. Theory IT-46, 446–464 (2000)

    Article  Google Scholar 

  25. Wagner, G.P., Altenberg, L.: Complex adaptations and the evolution of evolvability. Evolution 50, 967–976 (1996)

    Article  Google Scholar 

  26. Watson, R.A., Pollack, J.B.: Hierarchically consistent test problems for genetic algorithms: Summary and additional results. In: Late breaking papers at the Genetic and Evolutionary Computation Conference, pp. 292–297 (1999)

    Google Scholar 

  27. Whitley, D., Rana, S., Heckendorn, R.: Representation issues in neighborhood search and evolutionary algorithms. In: Genetic Algorithms and Evolution Strategy in Engineering and Computer Science, pp. 39–58. John Wiley & Sons Ltd., Chichester (1997)

    Google Scholar 

  28. Wright, H., Poli, R., Stephens, C.R., Langdon, W.B., Pulavarty, S.: An Estimation of Distribution Algorithm based on maximum entropy. In: Deb, K., et al. (eds.) GECCO 2004. LNCS, vol. 3103, pp. 343–354. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Toussaint, M. (2005). Compact Genetic Codes as a Search Strategy of Evolutionary Processes. In: Wright, A.H., Vose, M.D., De Jong, K.A., Schmitt, L.M. (eds) Foundations of Genetic Algorithms. FOGA 2005. Lecture Notes in Computer Science, vol 3469. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11513575_5

Download citation

  • DOI: https://doi.org/10.1007/11513575_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-27237-3

  • Online ISBN: 978-3-540-32035-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics